Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903661

RESUMEN

Local blood flow control within the central nervous system (CNS) is critical to proper function and is dependent on coordination between neurons, glia, and blood vessels. Macroglia, such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation, and highlights changes during early diabetes. Structurally, microglia were found to contact retinal capillaries and neuronal synapses. In the brain and retinal explants, the addition of fractalkine, the sole ligand for monocyte receptor Cx3cr1, resulted in capillary constriction at regions of microglial contact. This vascular regulation was dependent on microglial Cx3cr1 involvement, since genetic and pharmacological inhibition of Cx3cr1 abolished fractalkine-induced constriction. Analysis of the microglial transcriptome identified several vasoactive genes, including angiotensinogen, a constituent of the renin-angiotensin system (RAS). Subsequent functional analysis showed that RAS blockade via candesartan abolished microglial-induced capillary constriction. Microglial regulation was explored in a rat streptozotocin (STZ) model of diabetic retinopathy. Retinal blood flow was reduced after 4 wk due to reduced capillary diameter and this was coincident with increased microglial association. Functional assessment showed loss of microglial-capillary response in STZ-treated animals and transcriptome analysis showed evidence of RAS pathway dysregulation in microglia. While candesartan treatment reversed capillary constriction in STZ-treated animals, blood flow remained decreased likely due to dilation of larger vessels. This work shows microglia actively participate in the neurovascular unit, with aberrant microglial-vascular function possibly contributing to the early vascular compromise during diabetic retinopathy.


Asunto(s)
Quimiocina CX3CL1/metabolismo , Retinopatía Diabética/patología , Microglía/fisiología , Retina/patología , Animales , Bencimidazoles/farmacología , Compuestos de Bifenilo/farmacología , Quimiocina CX3CL1/farmacología , Retinopatía Diabética/inducido químicamente , Retinopatía Diabética/metabolismo , Perfilación de la Expresión Génica , Ratones , Microglía/metabolismo , Neuronas/fisiología , Pericitos/patología , Ratas , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/genética , Retina/metabolismo , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/patología , Transducción de Señal/efectos de los fármacos , Estreptozocina/farmacología , Tetrazoles/farmacología , Vasoconstricción/efectos de los fármacos
2.
Clin Exp Ophthalmol ; 51(1): 81-91, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349522

RESUMEN

Diabetic retinopathy is the most feared complication for those with diabetes. Although visible vascular pathology traditionally defines the management of this condition, it is now recognised that a range of cellular changes occur in the retina from an early stage of diabetes. One of the most significant functional changes that occurs in those with diabetes is a loss of vasoregulation in response to changes in neural activity. There are several retinal cell types that are critical for mediating so-called neurovascular coupling, including Müller cells, microglia and pericytes. Although there is a great deal of evidence that suggests that Müller cells are integral to regulating the vasculature, they only modulate part of the vascular tree, highlighting the complexity of vasoregulation within the retina. Recent studies suggest that retinal immune cells, microglia, play an important role in mediating vasoconstriction. Importantly, retinal microglia contact both the vasculature and neural synapses and induce vasoconstriction in response to neurally expressed chemokines such as fractalkine. This microglial-dependent regulation occurs via the vasomediator angiotensinogen. Diabetes alters the way microglia regulate the retinal vasculature, by increasing angiotensinogen expression, causing capillary vasoconstriction and contributing to a loss of vascular reactivity to physiological signals. This article summarises recent studies showing changes in vascular regulation during diabetes, the potential mechanisms by which this occurs and the significance of these early changes to the progression of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Acoplamiento Neurovascular , Humanos , Angiotensinógeno/metabolismo , Retina/patología , Vasos Retinianos/patología , Microglía/metabolismo , Microglía/patología
3.
J Neurosci ; 38(20): 4708-4723, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29669747

RESUMEN

Microglia are the resident immune cells of the CNS, and their response to infection, injury and disease is well documented. More recently, microglia have been shown to play a role in normal CNS development, with the fractalkine-Cx3cr1 signaling pathway of particular importance. This work describes the interaction between the light-sensitive photoreceptors and microglia during eye opening, a time of postnatal photoreceptor maturation. Genetic removal of Cx3cr1 (Cx3cr1GFP/GFP ) led to an early retinal dysfunction soon after eye opening [postnatal day 17 (P17)] and cone photoreceptor loss (P30 onward) in mice of either sex. This dysfunction occurred at a time when fractalkine expression was predominantly outer retinal, when there was an increased microglial presence near the photoreceptor layer and increased microglial-cone photoreceptor contacts. Photoreceptor maturation and outer segment elongation was coincident with increased opsin photopigment expression in wild-type retina, while this was aberrant in the Cx3cr1GFP/GFP retina and outer segment length was reduced. A beadchip array highlighted Cx3cr1 regulation of genes involved in the photoreceptor cilium, a key structure that is important for outer segment elongation. This was confirmed with quantitative PCR with specific cilium-related genes, Rpgr and Rpgrip1, downregulated at eye opening (P14). While the overall cilium structure was unaffected, expression of Rpgr, Rpgrip1, and centrin were restricted to more proximal regions of the transitional zone. This study highlighted a novel role for microglia in postnatal neuronal development within the retina, with loss of fractalkine-Cx3cr1 signaling leading to an altered distribution of cilium proteins, failure of outer segment elongation and ultimately cone photoreceptor loss.SIGNIFICANCE STATEMENT Microglia are involved in CNS development and disease. This work highlights the role of microglia in postnatal development of the light-detecting photoreceptor neurons within the mouse retina. Loss of the microglial Cx3cr1 signaling pathway resulted in specific alterations in the cilium, a key structure in photoreceptor outer segment elongation. The distribution of key components of the cilium transitional zone, Rpgr, Rpgrip1, and centrin, were altered in retinae lacking Cx3cr1 with reduced outer segment length and cone photoreceptor death observed at later postnatal ages. This work identifies a novel role for microglia in the postnatal maturation of retinal photoreceptors.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/crecimiento & desarrollo , Retina/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas del Citoesqueleto , Ojo/crecimiento & desarrollo , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Femenino , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía , Cilio Conector de los Fotorreceptores/fisiología , Proteínas/genética , Proteínas/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología
4.
Exp Eye Res ; 187: 107753, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31408629

RESUMEN

The retina is known to have a local renin-angiotensin system (RAS) and dysfunction in the RAS is often associated with diseases of the retinal vasculature that cause irreversible vision loss. Regulation of the retinal vasculature to meet the metabolic needs of the tissues occurs through a mechanism called neurovascular coupling, which is critical for maintaining homeostatic function and support for neurons. Neurovascular coupling is the process by which support cells, including glia, regulate blood vessel calibre and blood flow in response to neural activity. In retinal vascular diseases, this coupling mechanism is often disrupted. However, the role that angiotensin II (Ang II), the main effector peptide of the RAS, has in regulating both the retinal vasculature and neurovascular coupling is not fully understood. As components of the RAS are located on the principal neurons, glia and blood vessels of the retina, it is possible that Ang II has a role in regulating communication and function between these three cell types, and therefore the capacity to regulate neurovascular coupling. This review focuses on components of the RAS located on the retinal neurovascular unit, and the potential of this system to contribute to blood flow modulation in the healthy and compromised retina.


Asunto(s)
Retinopatía Diabética/fisiopatología , Microglía/fisiología , Sistema Renina-Angiotensina/fisiología , Vasos Retinianos/fisiología , Angiotensina II/fisiología , Animales , Humanos
5.
Am J Pathol ; 187(8): 1670-1685, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628761

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease.


Asunto(s)
Envejecimiento/metabolismo , Macrófagos/metabolismo , Degeneración Macular/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Retina/metabolismo , Envejecimiento/patología , Animales , Modelos Animales de Enfermedad , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Macrófagos/patología , Degeneración Macular/genética , Degeneración Macular/patología , Ratones , Ratones Noqueados , Fagocitosis/fisiología , Receptores Purinérgicos P2X7/genética , Retina/patología
6.
Optom Vis Sci ; 91(8): 878-86, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24978866

RESUMEN

Over the recent years, there have been tremendous advances in our understanding of the genetic and environmental factors associated with the development of age-related macular degeneration (AMD). Examination of retinal changes in various animals has aided our understanding of the pathogenesis of the disease. Notably, mouse strains, carrying genetic anomalies similar to those affecting humans, have provided a foundation for understanding how various genetic risk factors affect retinal integrity. However, to date, no single mouse strain that develops all the features of AMD in a progressive age-related manner has been identified. In addition, a mutation present in some background strains has clouded the interpretation of retinal phenotypes in many mouse strains. The aim of this perspective was to describe how animals can be used to understand the significance of each sign of AMD, as well as key genetic risk factors.


Asunto(s)
Modelos Animales de Enfermedad , Degeneración Macular/etiología , Animales , Macaca fascicularis , Macaca mulatta , Degeneración Macular/diagnóstico , Ratones , Drusas Retinianas/diagnóstico , Drusas Retinianas/etiología , Factores de Riesgo
7.
Curr Opin Pharmacol ; 76: 102463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788268

RESUMEN

Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the elderly. Although new therapies have recently emerged, there are currently no ways of preventing the development of the disease. Changes in intracellular recycling processes. Changes in intracellular recycling processes, called autophagy, lead to debris accumulation and cellular dysfunction in AMD models and AMD patients. Drugs that enhance autophagy hold promise as therapies for slowing AMD progression in preclinical models; however, more studies in humans are required. While a definitive cure for AMD will likely hinge on a personalized medicine approach, treatments that enhance autophagy hold promise for slowing vision loss.


Asunto(s)
Autofagia , Degeneración Macular , Humanos , Autofagia/efectos de los fármacos , Degeneración Macular/tratamiento farmacológico , Animales
8.
Optom Vis Sci ; 90(3): 275-81, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23422944

RESUMEN

PURPOSE: To determine whether there is an age-dependent susceptibility in retinal function in response to repeated anterior chamber cannulation with or without intraocular pressure (IOP) elevation. METHODS: Baseline electroretinograms were measured in 3- and 18-month-old Sprague-Dawley rats (n = 16 each group). Following baseline assessment, eyes were randomly assigned to undergo a 60-min anterior chamber cannulation with IOP either left at baseline (sham, 15 mm Hg) or elevated to 60 mm Hg. This was repeated three additional times, with each episode separated by 1 week. At weeks 1 to 3, dark-adapted retinal function was assessed immediately before cannulation, with final functional assessment at week 4. RESULTS: Both sham and IOP elevated eyes of older rats showed retinal dysfunction, which became more pronounced with the number of repeated insults. This effect was largest for responses arising from the inner retina. Repeated insult in younger eyes did not produce a change in amplitude but an increase in the sensitivity to light of photoreceptoral and bipolar cell components of the electroretinogram. CONCLUSIONS: Repeated trauma, not IOP, produces permanent retinal dysfunction in older eyes. Younger eyes appear to be able to withstand this type of injury by upregulating sensitivity of outer and middle retinal responses to maintain normal inner retinal function.


Asunto(s)
Envejecimiento , Lesiones Oculares/complicaciones , Presión Intraocular , Retina/fisiopatología , Enfermedades de la Retina/etiología , Animales , Cámara Anterior/lesiones , Adaptación a la Oscuridad , Modelos Animales de Enfermedad , Electrorretinografía , Lesiones Oculares/fisiopatología , Estimulación Luminosa , Ratas , Ratas Sprague-Dawley , Enfermedades de la Retina/fisiopatología
9.
Neurobiol Aging ; 128: 1-16, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37130462

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss and dysfunction in the retinal pigment epithelium (RPE) with age is known to contribute to disease development. The aim of this study was to investigate how the C57BL/6J mouse RPE changes with age. RPE structure was found to change with age and eccentricity, with cell size increasing, nuclei lost, and tight junctions altered in the peripheral retina. Phagocytosis of photoreceptor outer segments (POS) by the RPE was investigated using gene expression analysis and histology. RNA-Seq transcriptomic gene profiling of the RPE showed a downregulation of genes involved in phagosome processing and histological analysis showed a decline in phagosome-lysosome association in the aged tissue. In addition, failures in the autophagy pathway that modulates intracellular waste degradation were observed in the aged RPE tissue. These findings highlight that RPE cell loss and slowing of POS processing contribute to RPE dysfunction with age and may predispose the aging eye to AMD development.


Asunto(s)
Fagocitosis , Epitelio Pigmentado de la Retina , Ratones , Animales , Ratones Endogámicos C57BL , Fagocitosis/genética , Fagosomas/metabolismo , Envejecimiento/genética
10.
Neurobiol Dis ; 45(3): 887-96, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198376

RESUMEN

Huntington's disease (HD) is a progressive neurological disease characterised by motor dysfunction, cognitive impairment and personality changes. Previous work in HD patients and animal models of the disease has also highlighted retinal involvement. This study characterised the changes in retinal structure and function early within the progression of disease using the R6/1 mouse model of HD. The retinal phenotype was observed to occur at the same time in the disease process as other neurological deficits such as motor dysfunction (by 13 weeks of age). There was a specific functional deficit in cone response to the electroretinogram and using immunocytochemical techniques, this dysfunction was found to be likely due to a progressive and complete loss of cone opsin and transducin protein expression by 20 weeks of age. In addition, there was an increase in Müller cell gliosis and the presence of ectopic rod photoreceptor terminals. This retinal remodelling is also observed in downstream neurons, namely the rod and cone bipolar cells. While R6/1 mice exhibit significant retinal pathology simultaneously with other more classical HD alterations, this doesn't lead to extensive cell loss. These findings suggest that in HD, cone photoreceptors are initially targeted, possibly via dysregulation of protein expression or trafficking and that this process is subsequently accompanied by increased retinal stress and neuronal remodelling also involving the rod pathway. As retinal structure and connectivity are well characterised, the retina may provide a useful model tissue in which to characterise the mechanisms important in the development of neuronal pathology in HD.


Asunto(s)
Opsinas de los Conos/metabolismo , Regulación de la Expresión Génica/genética , Enfermedad de Huntington/complicaciones , Neuronas/patología , Enfermedades de la Retina/etiología , Transducina/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Muerte Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electrorretinografía , Gliosis/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fenotipo , Enfermedades de la Retina/patología , Repeticiones de Trinucleótidos/genética
11.
Front Neurosci ; 16: 1009599, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408381

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.

12.
Autophagy ; 18(10): 2368-2384, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35196199

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of vision loss with recent evidence indicating an important role for macroautophagy/autophagy in disease progression. In this study we investigate the efficacy of targeting autophagy for slowing dysfunction in a mouse model with features of early AMD. Mice lacking APOE (apolipoprotein E; B6.129P2-Apoetm1UncJ/Arc) and C57BL/6 J- (wild-type, WT) mice were treated with metformin or trehalose in the drinking water from 5 months of age and the ocular phenotype investigated at 13 months. Control mice received normal drinking water. APOE-control mice had reduced retinal function and thickening of Bruch's membrane consistent with an early AMD phenotype. Immunohistochemical labeling showed reductions in MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 beta) and LAMP1 (lysosomal-associated membrane protein 1) labeling in the photoreceptors and retinal pigment epithelium (RPE). This correlated with increased LC3-II:LC3-I ratio and alterations in protein expression in multiple autophagy pathways measured by reverse phase protein array, suggesting autophagy was slowed. Treatment of APOE-mice with metformin or trehalose ameliorated the loss of retinal function and reduced Bruch's membrane thickening, enhancing LC3 and LAMP1 labeling in the ocular tissues and restoring LC3-II:LC3-I ratio to WT levels. Protein analysis indicated that both treatments boost ATM-AMPK driven autophagy. Additionally, trehalose increased p-MAPK14/p38 to enhance autophagy. Our study shows that treatments targeting pathways to enhance autophagy have the potential for treating early AMD and provide support for the use of metformin, which has been found to reduce the risk of AMD development in human patients.Abbreviations:AMD: age-related macular degeneration; AMPK: 5' adenosine monophosphate-activated protein kinase APOE: apolipoprotein E; ATM: ataxia telangiectasia mutated; BCL2L1/Bcl-xL: BCL2-like 1; DAPI: 4'-6-diamidino-2-phenylindole; ERG: electroretinogram; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner and outer photoreceptor segments; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; OCT: optical coherence tomography; ONL: outer nuclear layer; OPs: oscillatory potentials; p-EIF4EBP1: phosphorylated eukaryotic translation initiation factor 4E binding protein 1; p-MAPK14/p38: phosphorylated mitogen-activated protein kinase 14; RPE: retinal pigment epithelium; RPS6KB/p70 S6 kinase: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; TP53/TRP53/p53: tumor related protein 53; TSC2: TSC complex subunit 2; WT: wild type.


Asunto(s)
Agua Potable , Degeneración Macular , Metformina , Proteína Quinasa 14 Activada por Mitógenos , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato , Animales , Apolipoproteínas E/genética , Autofagia/genética , Agua Potable/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína Sequestosoma-1/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo , Trehalosa , Proteína p53 Supresora de Tumor/genética
13.
Front Cell Neurosci ; 15: 659843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967697

RESUMEN

Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.

14.
Front Physiol ; 12: 644929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335288

RESUMEN

Piezo2 is a mechanically gated ion-channel that has a well-defined role in innocuous mechanical sensitivity, but recently has also been suggested to play a role in mechanically induced pain. Here we have explored a role for Piezo2 in mechanically evoked bone nociception in Sprague Dawley rats. We have used an in vivo electrophysiological bone-nerve preparation to record the activity of single Aδ bone afferent neurons in response to noxious mechanical stimulation, after Piezo2 knockdown in the dorsal root ganglia with intrathecal injections of Piezo2 antisense oligodeoxynucleotides, or in control animals that received mismatch oligodeoxynucleotides. There were no differences in the number of Aδ bone afferent neurons responding to the mechanical stimulus, or their threshold for mechanical activation, in Piezo2 knockdown animals compared to mismatch control animals. However, bone afferent neurons in Piezo2 knockdown animals had reduced discharge frequencies and took longer to recover from stimulus-evoked fatigue than those in mismatch control animals. Piezo2 knockdown also prevented nerve growth factor (NGF)-induced sensitization of bone afferent neurons, and retrograde labeled bone afferent neurons that expressed Piezo2 co-expressed TrkA, the high affinity receptor for NGF. Our findings demonstrate that Piezo2 contributes to the response of bone afferent neurons to noxious mechanical stimulation, and plays a role in processes that sensitize them to mechanical stimulation.

15.
J Clin Med ; 10(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525639

RESUMEN

The presence of drusen is an important hallmark of age-related macular degeneration (AMD). Laser-induced regression of drusen, first observed over four decades ago, has led to much interest in the potential role of lasers in slowing the progression of the disease. In this article, we summarise the key insights from pre-clinical studies into the possible mechanisms of action of various laser interventions that result in beneficial changes in the retinal pigment epithelium/Bruch's membrane/choriocapillaris interface. Key learnings from clinical trials of laser treatment in AMD are also summarised, concentrating on the evolution of laser technology towards short pulse, non-thermal delivery such as the nanosecond laser. The evolution in our understanding of AMD, through advances in multimodal imaging and functional testing, as well as ongoing investigation of key pathological mechanisms, have all helped to set the scene for further well-conducted randomised trials to further explore potential utility of the nanosecond and other subthreshold short pulse lasers in AMD.

16.
Methods Mol Biol ; 2041: 209-221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646491

RESUMEN

Adenosine triphosphate (ATP) is actively transported into vesicles for purinergic neurotransmission by the vesicular nucleotide transporter, VNUT, encoded by the gene, solute carrier 17, member 9 (SLC17A9). In this chapter, methods are described for fluorescent labeling of VNUT positive cells and quantification of vesicular ATP release using live cell imaging. Directions for preparation of viable dissociated neurons and cellular labeling with an antibody against VNUT and for ATP containing synaptic vesicles with fluorescent ATP markers, quinacrine or MANT-ATP, are detailed. Using confocal microscope live cell imaging, cells positive for VNUT can be observed colocalized with fluorescent ATP vesicular markers, which occur as discrete puncta near the cell membrane. Vesicular release, stimulated with a depolarizing, high potassium physiological saline solution induces ATP marker fluorescence reduction at the cell membrane and this can be quantified over time to assess ATP release. Pretreatment with the voltage gated calcium channel blocker, cadmium, blocks depolarization-induced membrane fluorescence changes, suggesting that VNUT-positive neurons release ATP via calcium-dependent exocytosis. This technique may be applied for quantifying vesicular ATP release across the peripheral and central nervous system and is useful for unveiling the intricacies of purinergic neurotransmission.


Asunto(s)
Adenosina Trifosfato/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Neuronas/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Retina/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Transporte Biológico , Exocitosis , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Neuronas/ultraestructura , Retina/ultraestructura
17.
Front Neurosci ; 14: 581579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224023

RESUMEN

Photoreceptor death contributes to 50% of irreversible vision loss in the western world. Pro23His (P23H) transgenic albino rat strains are widely used models for the most common rhodopsin gene mutation associated with the autosomal dominant form of retinitis pigmentosa. However, the mechanism(s) by which photoreceptor death occurs are not well understood and were the principal aim of this study. We first used electroretinogram recording and optical coherence tomography to confirm the time course of functional and structural loss. Electroretinogram analyses revealed significantly decreased rod photoreceptor (a-wave), bipolar cell (b-wave) and amacrine cell responses (oscillatory potentials) from P30 onward. The cone-mediated b-wave was also decreased from P30. TUNEL analysis showed extensive cell death at P18, with continued labeling detected until P30. Focused gene expression arrays indicated activation of, apoptosis, autophagy and necroptosis in whole retina from P14-18. However, analysis of mitochondrial permeability changes (ΔΨm) using JC-1 dye, combined with immunofluorescence markers for caspase-dependent (cleaved caspase-3) and caspase-independent (AIF) cell death pathways, indicated mitochondrial-mediated cell death was not a major contributor to photoreceptor death. By contrast, reverse-phase protein array data combined with RIPK3 and phospho-MLKL immunofluorescence indicated widespread necroptosis as the predominant mechanism of photoreceptor death. These findings highlight the complexity of mechanisms involved in photoreceptor death in the Pro23His rat model of degeneration and suggest therapies that target necroptosis should be considered for their potential to reduce photoreceptor death.

18.
Clin Exp Optom ; 103(5): 562-571, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31838755

RESUMEN

Glaucoma is a neurodegenerative disease characterised by progressive damage to the retinal ganglion cells (RGCs), the output neurons of the retina. RGCs are a heterogenous class of retinal neurons which can be classified into multiple types based on morphological, functional and genetic characteristics. This review examines the body of evidence supporting type-specific vulnerability of RGCs in glaucoma and explores potential mechanisms by which this might come about. Studies of donor tissue from glaucoma patients have generally noted greater vulnerability of larger RGC types. Models of glaucoma induced in primates, cats and mice also show selective effects on RGC types - particularly OFF RGCs. Several mechanisms may contribute to type-specific vulnerability, including differences in the expression of calcium-permeable receptors (for example pannexin-1, P2X7, AMPA and transient receptor potential vanilloid receptors), the relative proximity of RGCs and their dendrites to blood supply in the inner plexiform layer, as well as differing metabolic requirements of RGC types. Such differences may make certain RGCs more sensitive to intraocular pressure elevation and its associated biomechanical and vascular stress. A greater understanding of selective RGC vulnerability and its underlying causes will likely reveal a rich area of investigation for potential treatment targets.


Asunto(s)
Glaucoma/diagnóstico , Presión Intraocular/fisiología , Células Ganglionares de la Retina/patología , Progresión de la Enfermedad , Glaucoma/fisiopatología , Humanos , Índice de Severidad de la Enfermedad
19.
Optom Vis Sci ; 86(1): E23-30, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19104466

RESUMEN

PURPOSE: Excessive axial elongation of the eye is the principal structural cause of myopia. The increase in eye size results from active remodelling of the sclera, producing a weakened scleral matrix. The present study will detail the biomechanics of the sclera and highlight the matrix and cellular factors important in the control of eye size. METHODS: Scleral elasticity (load vs. tissue extension) and creep rate (tissue extension vs. time) have been measured postmortem in human eyes. Animal models of myopia have allowed the direct relevance of scleral biomechanics to be investigated during myopia development. Recently, data on tissue matrices incorporating scleral fibroblasts have highlighted the role of cellular contraction in scleral biomechanics. RESULTS: Scleral elasticity is increased in eyes developing myopia, with a reduction in the failure load of the tissue. Scleral creep rate is increased in the sclera from eyes developing myopia, and reduced in eyes recovering from myopia. These changes in biomechanical properties of the sclera occur early in the development of myopia (within 24 h). Alterations in scleral biomechanics during myopia development have been attributed to changes in matrix constituents, principally reduced collagen content. Although the biochemical structure of the sclera plays a critical role in defining the mechanical properties, recent studies investigating the cellular mechanics of the sclera, implicate myofibroblasts in scleral biomechanics. Scleral myofibroblasts have the capacity to contract the matrix and are regulated by tissue stress and growth factors such as transforming growth factor-beta. Changes in these regulatory factors have been observed during myopia development, implicating cellular factors in the resultant weakened sclera. CONCLUSIONS: Changes in the biomechanical properties of the sclera are important in facilitating the increase in axial length that results in myopia. Understanding the matrix and cellular factors contributing to the weakened sclera may aid in the development of a clinically appropriate treatment for myopia.


Asunto(s)
Miopía/fisiopatología , Esclerótica/fisiopatología , Animales , Fenómenos Biomecánicos , Colágeno/química , Colágeno/fisiología , Elasticidad , Ojo/anatomía & histología , Humanos , Modelos Animales , Relajación Muscular , Fenómenos Fisiológicos Oculares , Valores de Referencia , Esclerótica/fisiología , Tupaiidae , Soporte de Peso
20.
Drug Discov Today ; 24(8): 1598-1605, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30954685

RESUMEN

Age-related macular degeneration and glaucoma are the commonest causes of irreversible vision loss in industrialized countries. The purine ATP is known to regulate a range of cellular functions in the retina via its action on P2 receptors, especially the P2X7 receptor. Although agents that attenuate P2X7 receptor function have been in development for many years, no compound is currently approved for the treatment of eye disease. However, newer compounds that cross the blood-brain barrier could have potential to reduce vision loss. This review will outline recent information relating to the role of P2X7 in age-related macular degeneration and glaucoma and, subsequently, we will discuss recent developments for attenuating P2X7 receptor function.


Asunto(s)
Soluciones Oftálmicas/farmacología , Soluciones Oftálmicas/uso terapéutico , Receptores Purinérgicos P2X7/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Enfermedades de la Retina/tratamiento farmacológico , Animales , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Humanos , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Enfermedades de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA