Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38851297

RESUMEN

The development of the human central nervous system initiates in the early embryonic period until long after delivery. It has been shown that several neurological and neuropsychiatric diseases originate from prenatal incidents. Mathematical models offer a direct way to understand neurodevelopmental processes better. Mathematical modelling of neurodevelopment during the embryonic period is challenging in terms of how to 'Approach', how to initiate modelling and how to propose the appropriate equations that fit the underlying dynamics of neurodevelopment during the embryonic period while including the variety of elements that are built-in naturally during the process of neurodevelopment. It is imperative to answer where and how to start modelling; in other words, what is the appropriate 'Approach'? Therefore, one objective of this study was to tackle the mathematical issue broadly from different aspects and approaches. The approaches were divided into three embryonic categories: cell division, neural tube growth and neural plate growth. We concluded that the neural plate growth approach provides a suitable platform for simulation of brain formation/neurodevelopment compared to cell division and neural tube growth. We devised a novel equation and designed algorithms that include geometrical and topological algorithms that could fit most of the necessary elements of the neurodevelopmental process during the embryonic period. Hence, the proposed equations and defined mathematical structure would be a platform to generate an artificial neural network that autonomously grows and develops.


Asunto(s)
Tubo Neural , Humanos , Tubo Neural/embriología , Neurogénesis , Neuronas/citología , Algoritmos , Modelos Neurológicos , Animales , Redes Neurales de la Computación , División Celular , Desarrollo Embrionario , Placa Neural/citología , Placa Neural/embriología
2.
Arch Toxicol ; 98(1): 289-301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37870577

RESUMEN

Changes in pharmacokinetics and endogenous metabolites may underlie additive biological effects of concomitant use of antipsychotics and opioids. In this study, we employed untargeted metabolomics analysis and targeted analysis to examine the changes in drug metabolites and endogenous metabolites in the prefrontal cortex (PFC), midbrain, and blood of rats following acute co-administration of quetiapine and methadone. Rats were divided into four groups and received cumulative increasing doses of quetiapine (QTP), methadone (MTD), quetiapine + methadone (QTP + MTD), or vehicle (control). All samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Our findings revealed increased levels of the quetiapine metabolites: Norquetiapine, O-dealkylquetiapine, 7-hydroxyquetiapine, and quetiapine sulfoxide, in the blood and brain when methadone was present. Our study also demonstrated a decrease in methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in the rat brain when quetiapine was present. Despite these findings, there were only small differences in the levels of 225-296 measured endogenous metabolites due to co-administration compared to single administrations. For example, N-methylglutamic acid, glutaric acid, p-hydroxyphenyllactic acid, and corticosterone levels were significantly decreased in the brain of rats treated with both compounds. Accumulation of serotonin in the midbrain was additionally observed in the MTD group, but not in the QTP + MTD group. In conclusion, this study in rats suggests a few but important additive metabolic effects when quetiapine and methadone are co-administered.


Asunto(s)
Antipsicóticos , Metadona , Ratas , Animales , Metadona/toxicidad , Fumarato de Quetiapina , Analgésicos Opioides/metabolismo , Encéfalo/metabolismo , Antipsicóticos/toxicidad , Pirrolidinas/metabolismo
3.
Acta Neuropsychiatr ; 36(3): 129-138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38178717

RESUMEN

Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK's role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.


Asunto(s)
Bradiquinina , Sistema Nervioso Central , Humanos , Animales , Bradiquinina/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Trastorno de Pánico/metabolismo , Trastornos Mentales/metabolismo , Trastornos Mentales/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Trastorno Depresivo/tratamiento farmacológico
4.
Int J Neuropsychopharmacol ; 26(5): 350-358, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067203

RESUMEN

BACKGROUND: Recent preclinical and clinical studies have shed light on the possible impact of sex and estrous/menstrual cycle on ketamine's antidepressant action but with incongruous results. The preclinical studies that have shown the effects of ovarian sex hormones have not done so in animal models of depression. Thus, the aim of the present study is to scrutinize the acute behavioral responses to a subanesthetic dose of S-ketamine in males vs females and in different estrous phases in free-cycling females in a well-powered translational approach. METHODS: We evaluated the behavioral sensitivity to 20 mg/kg S-ketamine (i.p.) in male and female Flinders Sensitive Line rats (FSLs) and their counterpart Flinders Resistant Line rats (FRLs) subjected to the open field and forced swim tests. Female rats were disaggregated into different estrous phases, and the behavioral outcomes were compared. RESULTS: Acute administration of S-ketamine had robust antidepressant-like effects in FSLs. Within our study power, we could not detect sex- or estrous cycle-specific different antidepressant-like responses to S-ketamine in FSLs. Fluctuations in the levels of ovarian sex hormones across different estrous cycles did not behaviorally affect S-ketamine's rapid-acting antidepressant mode of action. No sex-related or estrous cycle-related impact on behavioral despair was observed even among FRLs and saline-treated FSLs. CONCLUSIONS: We conclude that physiological oscillations of estrogen and progesterone levels neither amplify nor diminish the behavioral antidepressant-like effect of S-ketamine. In addition, fluctuations of ovarian sex hormones do not predispose female animals to exhibit enhanced or reduced depressive-like and anxiety-like behaviors.


Asunto(s)
Depresión , Ketamina , Ratas , Masculino , Femenino , Animales , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Ketamina/farmacología , Ciclo Estral
5.
Mol Psychiatry ; 27(8): 3138-3149, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35585261

RESUMEN

Despite attaining significant advances toward better management of depressive disorders, we are still facing several setbacks. Developing rapid-acting antidepressants with sustained effects is an aspiration that requires thinking anew to explore possible novel targets. Recently, the lateral habenula (LHb), the brain's "anti-reward system", has been shown to go awry in depression in terms of various molecular and electrophysiological signatures. Some of the presumed contributors to such observed aberrations are astrocytes. These star-shaped cells of the brain can alter the firing pattern of the LHb, which keeps the activity of the midbrain's aminergic centers under tight control. Astrocytes are also integral parts of the tripartite synapses, and can therefore modulate synaptic plasticity and leave long-lasting changes in the brain. On the other hand, it was discovered that astrocytes express cannabinoid type 1 receptors (CB1R), which can also take part in long-term plasticity. Herein, we recount how the LHb of a depressed brain deviates from the "normal" one from a molecular perspective. We then try to touch upon the alterations of the endocannabinoid system in the LHb, and cast the idea that modulation of astroglial CB1R may help regulate habenular neuronal activity and synaptogenesis, thereby acting as a new pharmacological tool for regulation of mood and amelioration of depressive symptoms.


Asunto(s)
Habénula , Endocannabinoides/farmacología , Astrocitos , Sinapsis/fisiología , Antidepresivos/farmacología
6.
Acta Neuropsychiatr ; 35(1): 35-49, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36101010

RESUMEN

The Wistar Hannover rat (WHR) is a strain commonly used for toxicity studies but rarely used in studies investigating depression neurobiology. In this study, we aimed to characterise the behavioural responses of WHR to acute and repeated antidepressant treatments upon exposure to the forced swim test (FST) or learned helplessness (LH) test. WHR were subjected to forced swimming pre-test and test with antidepressant administration (imipramine, fluoxetine, or escitalopram) at 0, 5 h and 23 h after pre-test. WHR displayed high immobility in the test compared to unstressed controls (no pre-swim) and failed to respond to the antidepressants tested. The effect of acute and repeated treatment (imipramine, fluoxetine, escitalopram or s-ketamine) was then tested in animals not previously exposed to pre-test. Only imipramine (20 mg/kg, 7 days) and s-ketamine (acute) reduced the immobility time in the test. To further investigate the possibility that the WHR were less responsive to selective serotonin reuptake inhibitors, the effect of repeated treatment with fluoxetine (20 mg/kg, 7 days) was investigated in the LH model. The results demonstrated that fluoxetine failed to reduce the number of escape failures in two different protocols. These data suggest that the WHR do not respond to the conventional antidepressant treatment in the FST or the LH. Only s-ketamine and repeated imipramine were effective in WHR in a modified FST protocol. Altogether, these results indicate that WHR may be an interesting tool to investigate the mechanisms associated with the resistance to antidepressant drugs and identify more effective treatments.


Asunto(s)
Fluoxetina , Imipramina , Ratas , Animales , Fluoxetina/farmacología , Ratas Wistar , Imipramina/farmacología , Imipramina/uso terapéutico , Depresión/tratamiento farmacológico , Escitalopram , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación , Conducta Animal , Modelos Animales
7.
Eur J Neurosci ; 55(9-10): 2421-2434, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33170977

RESUMEN

It has been postulated that the activation of NMDA receptors (NMDAr) and nitric oxide (NO) production in the hippocampus is involved in the behavioral consequences of stress. Stress triggers NMDAr-induced calcium influx in limbic areas, such as the hippocampus, which in turn activates neuronal NO synthase (nNOS). Inhibition of nNOS or NMDAr activity can prevent stress-induced effects in animal models, but the molecular mechanisms behind this effect are still unclear. In this study, cultured hippocampal neurons treated with NMDA or dexamethasone showed an increased of DNA methyltransferase 3b (DNMT3b) mRNA expression, which was blocked by pre-treatment with nNOS inhibitor nω -propyl-l-arginine (NPA). In rats submitted to the Learned Helplessness paradigm (LH), we observed that inescapable stress increased DNMT3b mRNA expression at 1h and 24h in the hippocampus. The NOS inhibitors 7-NI and aminoguanidine (AMG) decreased the number of escape failures in LH and counteracted the changes in hippocampal DNMT3b mRNA induced in this behavioral paradigm. Altogether, our data suggest that NO produced in response to NMDAr activation following stress upregulates DNMT3b in the hippocampus.


Asunto(s)
Hipocampo , Óxido Nítrico Sintasa , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Inhibidores Enzimáticos/farmacología , Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I , ARN Mensajero/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Estrés Fisiológico , ADN Metiltransferasa 3B
8.
Addict Biol ; 27(5): e13214, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001431

RESUMEN

Fatal opioid poisonings often involve methadone or morphine. This study aimed to elucidate if quetiapine, a widely used sedative antipsychotic medication, may increase the risk of fatal opioid poisoning by additive inhibitory effects on the central nervous system. We used data from 323 cases of fatal methadone or/and morphine poisonings autopsied from 2013 to 2020, a survey of 34 drug users, and performed blinded placebo-controlled studies in 75 Flinders Resistant Line rats receiving three cumulative intraperitoneal doses of vehicle, methadone (2.5, 10 and 15 mg/kg), morphine (3.75, 15 and 22.5 mg/kg), quetiapine (3, 10 and 30 mg/kg) or quetiapine combined with methadone or morphine. Quetiapine was detected in 20.4% of fatal opioid poisonings with a significantly increased frequency over time, primarily in low or therapeutic concentrations, and was not associated with methadone or morphine concentrations. Use of quetiapine, most commonly in low-to-moderate doses to obtain a sleep-inducing or tranquillizing effect, was reported by 67.6% of survey respondents. In the animal studies, a significant impairment of sedation score, performance on the rotarod and open field mobility was observed in all treatment groups compared with vehicle. However, the effect of quetiapine plus the opioid was not significantly different from that of the opioid alone. Thus, no additive sedative effects were observed in rats. Our results suggest that quetiapine is more often an innocent bystander than a contributor to fatal opioid poisoning. However, the combined effects on other parameters, including blood pressure, cardiac rhythm and respiratory rate, need investigation.


Asunto(s)
Analgésicos Opioides , Consumidores de Drogas , Animales , Autopsia , Humanos , Hipnóticos y Sedantes , Metadona , Morfina/farmacología , Fumarato de Quetiapina/farmacología , Ratas
9.
Brain Behav Immun ; 97: 328-348, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339806

RESUMEN

It has become evident that coronavirus disease 2019 (COVID-19) has a multi-organ pathology that includes the brain and nervous system. Several studies have also reported acute psychiatric symptoms in COVID-19 patients. An increasing number of studies are suggesting that psychiatric deficits may persist after recovery from the primary infection. In the current systematic review, we provide an overview of the available evidence and supply information on potential risk factors and underlying biological mechanisms behind such psychiatric sequelae. We performed a systematic search for psychiatric sequelae in COVID-19 patients using the databases PubMed and Embase. Included primary studies all contained information on the follow-up period and provided quantitative measures of mental health. The search was performed on June 4th 2021. 1725 unique studies were identified. Of these, 66 met the inclusion criteria and were included. Time to follow-up ranged from immediately after hospital discharge up to 7 months after discharge, and the number of participants spanned 3 to 266,586 participants. Forty studies reported anxiety and/or depression, 20 studies reported symptoms- or diagnoses of post-traumatic stress disorder (PTSD), 27 studies reported cognitive deficits, 32 articles found fatigue at follow-up, and sleep disturbances were found in 23 studies. Highlighted risk factors were disease severity, duration of symptoms, and female sex. One study showed brain abnormalities correlating with cognitive deficits, and several studies reported inflammatory markers to correlate with symptoms. Overall, the results from this review suggest that survivors of COVID-19 are at risk of psychiatric sequelae but that symptoms generally improve over time.


Asunto(s)
COVID-19 , Trastornos por Estrés Postraumático , Ansiedad , Trastornos de Ansiedad , Femenino , Humanos , SARS-CoV-2
10.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072767

RESUMEN

Substance use/abuse is one of the main causes of depressive symptoms. Cannabis and synthetic cannabinoids in particular gained significant popularity in the past years. There is an increasing amount of clinical data associating such compounds with the inflammatory component of depression, indicated by the up-regulation of pro-inflammatory cytokines. Pro-inflammatory cytokines are also well-known to regulate the enzymes of the kynurenine pathway (KP), which is responsible for metabolizing tryptophan, a precursor in serotonin synthesis. Enhanced pro-inflammatory cytokine levels may over-activate the KP, leading to tryptophan depletion and reduced serotonin levels, which can subsequently precipitate depressive symptoms. Therefore, such mechanism might represent a possible link between the endocannabinoid system (ECS) and the KP in depression, via the inflammatory and dysregulated serotonergic component of the disorder. This review will summarize the data regarding those natural and synthetic cannabinoids that increase pro-inflammatory cytokines. Furthermore, the data on such cytokines associated with KP activation will be further reviewed accordingly. The interaction of the ECS and the KP has been postulated and demonstrated in some studies previously. This review will further contribute to this yet less explored connection and propose the KP to be the missing link between cannabinoid-induced inflammation and depressive symptoms.


Asunto(s)
Citocinas/metabolismo , Depresión/etiología , Depresión/metabolismo , Mediadores de Inflamación/metabolismo , Animales , Biomarcadores , Depresión/psicología , Susceptibilidad a Enfermedades , Endocannabinoides/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/etiología , Inflamación/metabolismo , Quinurenina/metabolismo , Redes y Vías Metabólicas , Serotonina/metabolismo , Transducción de Señal
11.
Acta Neuropsychiatr ; 33(5): 217-241, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34348819

RESUMEN

Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.


Asunto(s)
Biomarcadores/sangre , Depresión/tratamiento farmacológico , Depresión/genética , Metiltransferasas/antagonistas & inhibidores , Animales , Antidepresivos/farmacología , Encéfalo/metabolismo , Islas de CpG , Metilación de ADN/efectos de los fármacos , Depresión/sangre , Epigenómica , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Modelos Animales , Ratas , Ratas Wistar , Estrés Psicológico
12.
Behav Pharmacol ; 31(4): 333-342, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31860564

RESUMEN

DNA methylation, an epigenetic modification that mediates gene silencing, has been shown to play a role in the neurobiology of major depression. Studies suggested that terpenes inhibit DNA methylation and increase gene expression. The present study investigated the involvement of DNA methylation in the antidepressant-like activity of diene valepotriates, non-glicosilated carbocyclic iridoids that comprise a family of terpenes obtained from Valeriana glechomifolia. The antidepressant-like effect of diene valepotriates acute administration (5 mg/kg, p.o.) in mice submitted to the forced swimming test was followed by a decrease in global DNA methylation in animals' hippocampus (but not in the pre-frontal cortex). Mice pretreatment with anysomicin (a protein synthesis inhibitor) and K252a (an inhibitor of Trk receptors) attenuated diene valepotriates-induced antidepressant-like effect in the forced swimming test. Diene valepotriates elicited an upregulation in the TrkB receptor and a tendency to increase BDNF levels in mice hippocampus. These results demonstrate that DNA methylation could be an in vivo molecular target of diene valepotriates. The diene valepotriates-triggered reduction in hippocampal DNA methylation is accompanied by increased protein synthesis, which is involved in its antidepressant-like activity. Furthermore, BDNF-mediated TrkB signaling may contribute for diene valepotriates antidepressant-like effect.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Hipocampo/metabolismo , Iridoides/farmacología , Extractos Vegetales/farmacología , Receptor trkB/biosíntesis , Valeriana/química , Animales , Anisomicina/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Carbazoles/farmacología , Alcaloides Indólicos/farmacología , Iridoides/antagonistas & inhibidores , Masculino , Ratones , Extractos Vegetales/química , Corteza Prefrontal/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Cell Tissue Res ; 377(1): 45-58, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30649612

RESUMEN

Studies about the pathogenesis of mood disorders have consistently shown that multiple factors, including genetic and environmental, play a crucial role on their development and neurobiology. Multiple pathological theories have been proposed, of which several ultimately affects or is a consequence of dysfunction in brain neuroplasticity and homeostatic mechanisms. However, current clinical available pharmacological intervention, which is predominantly monoamine-based, suffers from a partial and lacking response even after weeks of continuous treatment. These issues raise the need for better understanding of aetiologies and brain abnormalities in depression, as well as developing novel treatment strategies. Nitric oxide (NO) is a gaseous unconventional neurotransmitter, which regulates and governs several important physiological functions in the central nervous system, including processes, which can be associated with the development of mood disorders. This review will present general aspects of the NO system in depression, highlighting potential targets that may be utilized and further explored as novel therapeutic targets in the future pharmacotherapy of depression. In particular, the review will link the importance of neuroplasticity mechanisms governed by NO to a possible molecular basis for the antidepressant effects.


Asunto(s)
Antidepresivos/farmacología , Encéfalo , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/metabolismo , Neurotransmisores/farmacología , Óxido Nítrico/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Ratones , Plasticidad Neuronal , Ratas , Transducción de Señal
14.
Neurobiol Learn Mem ; 159: 6-15, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30731235

RESUMEN

Enhancement of synaptic plasticity through changes in neuronal gene expression is a prerequisite for improved cognitive performance. Moreover, several studies have shown that DNA methylation is able to affect the expression of (e.g. plasticity) genes that are important for several cognitive functions. In this study, the effect of the DNA methyltransferase (DNMT) inhibitor RG108 was assessed on object pattern separation (OPS) task in mice. In addition, its effect on the expression of target genes was monitored. Administration of RG108 before the test led to a short-lasting, dose-dependent increase in pattern separation memory that was not present anymore after 48 h. Furthermore, treatment with RG108 did not enhance long-term memory of the animals when tested after a 24 h inter-trial interval in the same task. At the transcriptomic level, acute treatment with RG108 was accompanied by increased expression of Bdnf1, while expression of Bdnf4, Bdnf9, Gria1 and Hdac2 was not altered within 1 h after treatment. Methylation analysis of 14 loci in the promoter region of Bdnf1 revealed a counterintuitive increase in the levels of DNA methylation at three CpG sites. Taken together, these results indicate that acute administration of RG108 has a short-lasting pro-cognitive effect on object pattern separation that could be explained by increased Bdnf1 expression. The observed increase in Bdnf1 methylation suggests a complex interplay between Bdnf methylation-demethylation that promotes Bdnf1 expression and associated cognitive performance. Considering that impaired pattern separation could constitute the underlying problem of a wide range of mental and cognitive disorders, pharmacological agents including DNA methylation inhibitors that improve pattern separation could be compelling targets for the treatment of these disorders. In that respect, future studies are needed in order to determine the effect of chronic administration of such agents.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Hipocampo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Ftalimidas/farmacología , Percepción Espacial/efectos de los fármacos , Triptófano/análogos & derivados , Animales , Conducta Animal/efectos de los fármacos , Islas de CpG/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Ratones , Virus Diminuto del Ratón , Regiones Promotoras Genéticas/efectos de los fármacos , Triptófano/farmacología
15.
Behav Pharmacol ; 30(1): 59-66, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30299277

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) can modulate stress-related behaviours, thus representing an interesting target for new antidepressant drugs. TRPV1 can trigger glutamate release and nitric oxide synthesis in the brain, mechanisms also involved in the neurobiology of depression. However, it is not known if these mechanisms are involved in TRPV1-induced behavioural effects. Therefore, the aim of this study was to verify if the antidepressant-like effect induced by a TRPV1 antagonist in mice submitted to the forced swimming test (FST) would be facilitated by combined treatment with neuronal nitric oxide synthase (nNOS) inhibition and N-methyl-D-aspartate (NMDA) blockade. Male Swiss mice were given (intracerebroventricular) injections of capsazepine (CPZ) (TRPV1 antagonist - 0.05/0.1/0.3/0.6 nmol/µl), and AP7 (NMDA antagonist - 1/3/10 nmol/µl) or N-propyl-L-arginine (NPA, nNOS inhibitor - 0.001/0.01/0.1 nmol/µl), and 10 min later, submitted to an open field test, and immediately afterwards, to the FST. An additional group received coadministration of CPZ and AP7 or CPZ and NPA, in subeffective doses. The results demonstrated that CPZ (0.1 nmol/µl), AP7 (3 nmol/µl) and NPA (0.01/0.1 nmol/µl) induced antidepressant-like effects. Moreover, coadministration of subeffective doses of CPZ and AP7 or CPZ and NPA induced significant antidepressant-like effects. Altogether, the data indicate that blockade of TRPV1 receptors by CPZ induces antidepressant-like effects and that both nNOS inhibition and NMDA blockade facilitate CPZ effects in the FST.


Asunto(s)
Antidepresivos/uso terapéutico , Capsaicina/análogos & derivados , Depresión/tratamiento farmacológico , Ácido Glutámico/metabolismo , Óxido Nítrico/metabolismo , Natación/psicología , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacología , Animales , Apomorfina/análogos & derivados , Apomorfina/farmacología , Arginina/farmacología , Capsaicina/uso terapéutico , GMP Cíclico/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Inhibidores Enzimáticos/farmacología , Conducta Exploratoria/efectos de los fármacos , Masculino , Microinyecciones , Nitroprusiato/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Estadísticas no Paramétricas
16.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174279

RESUMEN

Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.


Asunto(s)
Depresión/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neurotransmisores/metabolismo
17.
Acta Neuropsychiatr ; 31(3): 143-150, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30890202

RESUMEN

OBJECTIVES: NMDA antagonists and nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects and may represent treatment options for depression. The behavioural effects of NMDA antagonists seem to depend on Tyrosine kinase B receptor (TrkB) activation by BDNF and on mechanistic target of rapamycin (mTOR), in the medial prefrontal cortex (mPFC). However, it is unknown whether similar mechanisms are involved in the behavioural effects of NOS inhibitors. Therefore, this work aimed at determining the role of TrkB and mTOR signalling in the prelimbic area of the ventral mPFC (vmPFC-PL) in the antidepressant-like effect of NOS inhibitors. METHODS: Pharmacological treatment with LY235959 or ketamine (NMDA antagonists), NPA or 7-NI (NOS inhibitors), BDNF, K252a (Trk antagonist) and rapamycin (mTOR inhibitor) injected systemically or into vmPFC-PL followed by behavioural assessment. RESULTS: We found that bilateral injection of BDNF into the vmPFC-PL induced an antidepressant-like effect, which was blocked by pretreatment with K252a and rapamycin. Microinjection of LY 235959 into the vmPFC-PL induced antidepressant-like effect that was suppressed by local rapamycin but not by K252a pretreatment. Microinjection of NPA induced an antidepressant-like effect insensitive to both K252a and rapamycin. Similarly, the antidepressant-like effects of a systemic injection of ketamine or 7-NI were not affected by blockade of mTOR or Trk receptors in the vmPFC-PL. CONCLUSION: Our data support the hypothesis that NMDA blockade induces an antidepressant-like effect that requires mTOR but not Trk signalling into the vmPFC-PL. The antidepressant-like effect induced by local NOS inhibition is independent on both Trk and mTOR signalling in the vmPFC-PL.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Antidepresivos/administración & dosificación , Apomorfina/administración & dosificación , Apomorfina/análogos & derivados , Apomorfina/farmacología , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Carbazoles/administración & dosificación , Carbazoles/farmacología , Pérdida de Tono Postural/efectos de los fármacos , Indazoles/administración & dosificación , Indazoles/farmacología , Alcaloides Indólicos/administración & dosificación , Alcaloides Indólicos/farmacología , Isoquinolinas/administración & dosificación , Isoquinolinas/farmacología , Ketamina/administración & dosificación , Ketamina/farmacología , Locomoción/efectos de los fármacos , Masculino , Microinyecciones , Ornitina/administración & dosificación , Ornitina/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Receptor trkB/antagonistas & inhibidores , Receptor trkB/biosíntesis , Sirolimus/administración & dosificación , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/biosíntesis
18.
Acta Neuropsychiatr ; 31(5): 258-265, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31230597

RESUMEN

OBJECTIVES: Treatment-resistance to antidepressants is a major problem in the pharmacotherapy of major depressive disorder (MDD). Unfortunately, only a few animal models are suitable for studying treatment-resistant depression, among them repeated treatment with Adrenocorticotropic hormone (ACTH) appears to be useful to mimic treatment-resistance to monoaminergic antidepressants. Therefore, the present work aimed to investigate the effectiveness of s-ketamine and rapastinel (formerly GLYX13), modulators of the glutamatergic N-methyl-D-aspartate receptor in ACTH-treated animals. METHODS: Naïve male Sprague Dawley rats were subjected to repeated subcutaneous injections with ACTH (100 µg/0.1 ml/rat/day) for 14 days and drug treatment on the test day (open field and forced swim test) with imipramine, s-ketamine or rapastinel. In addition, assessment of plasma levels of corticosterone and ACTH was carried out. RESULTS: We found that rats repeatedly treated with ACTH for 14 days responded to single injections with s-ketamine (15 mg/kg) and rapastinel (10 mg/kg), but failed to respond to imipramine (15 mg/kg). In the plasma, the levels of corticosterone and ACTH were increased after 14 days of daily treatment with ACTH, independently of the treatment. CONCLUSION: The present data confirm development of a resistance to treatment following chronic ACTH administration. In addition, the study confirms the possible effectiveness of s-ketamine and rapastinel as treatment options in treatment-resistant depression. Moreover, it highlights the importance of the glutamatergic system in the neurobiology of depression. Further studies are necessary to evaluate how repeated treatment with ACTH leads to a depressed condition resistant to monoaminergic antidepressants.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Imipramina/uso terapéutico , Ketamina/uso terapéutico , Oligopéptidos/uso terapéutico , Hormona Adrenocorticotrópica/sangre , Animales , Antidepresivos/administración & dosificación , Conducta Animal/efectos de los fármacos , Corticosterona/sangre , Trastorno Depresivo Resistente al Tratamiento/sangre , Modelos Animales de Enfermedad , Imipramina/administración & dosificación , Ketamina/administración & dosificación , Masculino , Oligopéptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Natación , Resultado del Tratamiento
19.
Horm Behav ; 100: 69-80, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29548783

RESUMEN

Evidences suggest the contributive role of early-life stress (ELS) to affective and anxiety disorders. Chronic exposure to the same stressor may generate habituation, while the exposure to different and repeated stressors gradually promotes maladaptive plasticity. Therefore, to further understand the effects of heterotypic stressors during early life period, male Wistar rat pups (P1-P21) were exposed to Multimodal ELS paradigm. Results indicate pups did not habituate to multimodal ELS and neonates respond to both physical and psychogenic stressors. Adult rats that underwent ELS protocol showed significant lower sucrose intake, decreased latency to immobility in the forced swim test and increased latency to light compartment in the light-dark test when compared to control group. Although it has been shown that ELS-induced changes in hippocampus can be used as biomarkers, multimodal ELS did not significantly alter BDNF, Tyrosine Kinase B (TrkB) receptor expression or neurogenesis in the hippocampus. Taken together, these findings indicate that multimodal ELS protocol can be an interesting experimental model for understanding long-term psychiatric disorders associated with stress. Indeed, our data with neurogenesis, BDNF and TrkB, and conflicting data from the literature, suggest that additional studies on synaptic plasticity/intracellular cascades would help to detect the underlying mechanisms.


Asunto(s)
Trastornos Mentales/etiología , Efectos Tardíos de la Exposición Prenatal , Estrés Psicológico/complicaciones , Animales , Animales Recién Nacidos , Trastornos de Ansiedad/etiología , Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/fisiopatología , Corticosterona/metabolismo , Trastorno Depresivo/etiología , Trastorno Depresivo/metabolismo , Trastorno Depresivo/fisiopatología , Femenino , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisario/crecimiento & desarrollo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Neurogénesis/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Wistar , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Natación/fisiología , Natación/psicología
20.
Acta Neuropsychiatr ; 30(3): 127-136, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29151391

RESUMEN

BACKGROUND: Nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects in animal models sensitive to acute drug treatment such as the forced swimming test. However, it is not yet clear if repeated treatment with these drugs is required to induce antidepressant-like effects in preclinical models. OBJECTIVE: The aim of this study was to test the effect induced by acute or repeated (7 days) treatment with 7-nitroindazole (7-NI), a preferential inhibitor of neuronal NOS, in rats submitted to the learned helplessness (LH) model. In addition, we aimed at investigating if 7-NI treatment would increase brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus, similarly to the effect of prototype antidepressants. METHODS: Animals were submitted to a pre-test (PT) session with inescapable footshocks or habituation (no shocks) to the experimental shuttle box. Six days later they were exposed to a test with escapable footshocks. Independent groups received acute (a single injection after PT or before test) or repeated (once a day for 7 days) treatment with vehicle or 7-NI (30 mg/kg). RESULTS: Repeated, but not acute, treatment with 7-NI attenuated LH development. The effect was similar to repeated imipramine treatment. Moreover, in an independent experimental group, only repeated treatment with 7-NI and imipramine increased BDNF protein levels in the hippocampus. CONCLUSION: The results suggest the nitrergic system could be a target for the treatment of depressive-like conditions. They also indicate that, similar to the positive control imipramine, the antidepressant-like effects of NOS inhibition could involve an increase in hippocampal BDNF levels.


Asunto(s)
Antidepresivos Tricíclicos/farmacología , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Desamparo Adquirido , Hipocampo/efectos de los fármacos , Óxido Nítrico Sintasa/antagonistas & inhibidores , Animales , Antidepresivos Tricíclicos/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Imipramina/farmacología , Indazoles/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA