RESUMEN
Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αß T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.
Asunto(s)
Neoplasias , Linfocitos T , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Perfilación de la Expresión GénicaRESUMEN
To accelerate the development of Advanced Therapy Medicinal Products (ATMPs) for patients suffering from life-threatening cancer with limited therapeutic options, regulatory approaches need to be constantly reviewed, evaluated and adjusted, as necessary. This includes utilizing science and risk-based approaches to mitigate and balance potential risks associated with early clinical research and a more flexible manufacturing paradigm. In this paper, T2EVOLVE an Innovative Medicine Initiative (IMI) consortium explores opportunities to expedite the development of CAR and TCR engineered T cell therapies in the EU by leveraging tools within the existing EU regulatory framework to facilitate an iterative and adaptive learning approach across different product versions with similar design elements or based on the same platform technology. As understanding of the linkage between product quality attributes, manufacturing processes, clinical efficacy and safety evolves through development and post licensure, opportunities are emerging to streamline regulatory submissions, optimize clinical studies and extrapolate data across product versions reducing the need to perform duplicative studies. It is worth noting that this paper is focusing on CAR- and TCR-engineered T cell therapies but the concepts may be applied more broadly to engineered cell therapy products (e.g., CAR NK cell therapy products).
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos TRESUMEN
Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.
Asunto(s)
Neoplasias , Linfocitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia/métodos , Organoides/patologíaRESUMEN
γδT cell receptors (γδTCRs) recognize a broad range of malignantly transformed cells in mainly a major histocompatibility complex (MHC)-independent manner, making them valuable additions to the engineered immune effector cell therapy that currently focuses primarily on αßTCRs and chimeric antigen receptors (CARs). As an exception to the rule, we have previously identified a γδTCR, which exerts antitumor reactivity against HLA-A*24:02-expressing malignant cells, however without the need for defined HLA-restricted peptides, and without exhibiting any sign of off-target toxicity in humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mouse models. This particular tumor-HLA-A*24:02-specific Vγ5Vδ1TCR required CD8αα co-receptor for its tumor reactive capacity when introduced into αßT cells engineered to express a defined γδTCR (TEG), referred to as TEG011; thus, it was only active in CD8+ TEG011. We subsequently explored the concept of additional redirection of CD4+ T cells through co-expression of the human CD8α gene into CD4+ and CD8+ TEG011 cells, later referred as TEG011_CD8α. Adoptive transfer of TEG011_CD8α cells in humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mice injected with tumor HLA-A*24:02+ cells showed superior tumor control in comparison to TEG011, and to mock control groups. The total percentage of mice with persisting TEG011_CD8α cells, as well as the total number of TEG011_CD8α cells per mice, was significantly improved over time, mainly due to a dominance of CD4+CD8+ double-positive TEG011_CD8α, which resulted in higher total counts of functional T cells in spleen and bone marrow. We observed that tumor clearance in the bone marrow of TEG011_CD8α-treated mice associated with better human T cell infiltration, which was not observed in the TEG011-treated group. Overall, introduction of transgenic human CD8α receptor on TEG011 improves antitumor reactivity against HLA-A*24:02+ tumor cells and further enhances in vivo tumor control.
Asunto(s)
Antígenos CD8 , Antígeno HLA-A24 , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Ratones Transgénicos , Neoplasias/terapiaRESUMEN
γδT cells play an important role in cancer immunosurveillance and are able to distinguish malignant cells from their healthy counterparts via their γδTCR. This characteristic makes γδT cells an attractive candidate for therapeutic application in cancer immunotherapy. Previously, we have identified a novel CD8α-dependent tumor-specific allo-HLA-A*24:02-restricted Vγ5Vδ1TCR with potential therapeutic value when used to engineer αßT cells from HLA-A*24:02 harboring individuals. αßT cells engineered to express this defined Vγ5Vδ1TCR (TEG011) have been suggested to recognize spatial changes in HLA-A*24:02 present selectively on tumor cells but not their healthy counterparts. However, in vivo efficacy and toxicity studies of TEG011 are still limited. Therefore, we extend the efficacy and toxicity studies as well as the dynamics of TEG011 in vivo in a humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mouse model to allow the preparation of a first-in-men clinical safety package for adoptive transfer of TEG011. Mice treated with TEG011 did not exhibit any graft-versus-host disease-like symptoms and extensive analysis of pathologic changes in NSG-A24:02 mice did not show any off-target toxicity of TEG011. However, loss of persistence of TEG011 in tumor-bearing mice was associated with the outgrowth of extramedullary tumor masses as also observed for mock-treated mice. In conclusion, TEG011 is well tolerated without harming HLA-A*24:02+ expressing healthy tissues, and TEG011 persistence seems to be crucial for long-term tumor control in vivo.
Asunto(s)
Antígeno HLA-A24/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Neoplasias de los Tejidos Blandos/prevención & control , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Ingeniería Celular , Expresión Génica , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Antígeno HLA-A24/inmunología , Humanos , Inmunoterapia/métodos , Células K562 , Masculino , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Transducción de Señal , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/inmunología , Neoplasias de los Tejidos Blandos/patología , Linfocitos T Reguladores/patología , Linfocitos T Reguladores/trasplante , Transducción Genética , Irradiación Corporal TotalRESUMEN
BACKGROUND: γ9δ2T cells, which express Vγ9 and Vδ2 chains of the T cell receptor (TCR), mediate cancer immune surveillance by sensing early metabolic changes in malignant leukemic blast and not their healthy hematopoietic stem counterparts via the γ9δ2TCR targeting joined conformational and spatial changes of CD277 at the cell membrane (CD277J). This concept led to the development of next generation CAR-T cells, so-called TEGs: αßT cells Engineered to express a defined γδTCR. The high affinity γ9δ2TCR clone 5 has recently been selected within the TEG format as a clinical candidate (TEG001). However, exploring safety and efficacy against a target, which reflects an early metabolic change in tumor cells, remains challenging given the lack of appropriate tools. Therefore, we tested whether TEG001 is able to eliminate established leukemia in a primary disease model, without harming other parts of the healthy hematopoiesis in vivo. METHODS: Separate sets of NSG mice were respectively injected with primary human acute myeloid leukemia (AML) blasts and cord blood-derived human progenitor cells from healthy donors. These mice were then treated with TEG001 and mock cells. Tumor burden and human cells engraftment were measured in peripheral blood and followed up over time by quantifying for absolute cell number by flow cytometry. Statistical analysis was performed using non-parametric 2-tailed Mann-Whitney t-test. RESULTS: We successfully engrafted primary AML blasts and healthy hematopoietic cells after 6-8 weeks. Here we report that metabolic cancer targeting through TEG001 eradicated established primary leukemic blasts in vivo, while healthy hematopoietic compartments derived from human cord-blood remained unharmed in spite of TEGs persistence up to 50 days after infusion. No additional signs of off-target toxicity were observed in any other tissues. CONCLUSION: Within the limitations of humanized PD-X models, targeting CD277J by TEG001 is safe and efficient. Therefore, we have initiated clinical testing of TEG001 in a phase I first-in-human clinical trial (NTR6541; date of registration 25 July 2017).
Asunto(s)
Antineoplásicos/farmacología , Células Sanguíneas/efectos de los fármacos , Butirofilinas/antagonistas & inhibidores , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Animales , Antígenos CD , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Células Sanguíneas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Histocitoquímica , Humanos , Ratones , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The induction by vaccination of broadly neutralizing antibodies (bNAbs) capable of neutralizing various HIV-1 viral strains is challenging, but understanding how a subset of HIV-infected individuals develops bNAbs may guide immunization strategies. Here, we describe the isolation and characterization of the bNAb ACS202 from an elite neutralizer that recognizes a new, trimer-specific and cleavage-dependent epitope at the gp120-gp41 interface of the envelope glycoprotein (Env), involving the glycan N88 and the gp41 fusion peptide. In addition, an Env trimer, AMC011 SOSIP.v4.2, based on early virus isolates from the same elite neutralizer, was constructed, and its structure by cryo-electron microscopy at 6.2â Å resolution reveals a closed, pre-fusion conformation similar to that of the BG505 SOSIP.664 trimer. The availability of a native-like Env trimer and a bNAb from the same elite neutralizer provides the opportunity to design vaccination strategies aimed at generating similar bNAbs against a key functional site on HIV-1.