Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107358, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782206

RESUMEN

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.


Asunto(s)
Ácidos Aristolóquicos , Albúmina Sérica Humana , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Humanos , Cristalografía por Rayos X , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Aductos de ADN/metabolismo , Aductos de ADN/química , Unión Proteica , Ácido Mirístico/metabolismo , Ácido Mirístico/química
2.
Genomics ; 116(1): 110781, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38182036

RESUMEN

Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.


Asunto(s)
Cíclidos , Humanos , Animales , Cíclidos/genética , Uganda , Acuicultura , Cruzamiento , Variación Genética
3.
Arch Toxicol ; 93(7): 1893-1902, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31203411

RESUMEN

Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1-10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50% but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1-1 µM), a potent inhibitor of CYP2A, resulted in a 90% decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.


Asunto(s)
2-Naftilamina/metabolismo , Compuestos de Aminobifenilo/metabolismo , Carbolinas/metabolismo , Carcinógenos/metabolismo , 2-Naftilamina/toxicidad , Compuestos de Aminobifenilo/toxicidad , Carbolinas/toxicidad , Carcinógenos/toxicidad , Línea Celular , Cromatografía Liquida , Aductos de ADN/metabolismo , Daño del ADN/efectos de los fármacos , Humanos , Espectrometría de Masas , Vejiga Urinaria/citología , Vejiga Urinaria/metabolismo
4.
Mol Carcinog ; 57(9): 1130-1143, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29683208

RESUMEN

Pancreatic Cancer (PC) is a deadly disease in need of new therapeutic options. We recently developed a novel tricarbonylmethane agent (CMC2.24) as a therapeutic agent for PC, and evaluated its efficacy in preclinical models of PC. CMC2.24 inhibited the growth of various human PC cell lines in a concentration and time-dependent manner. Normal human pancreatic epithelial cells were resistant to CMC2.24, indicating selectivity. CMC2.24 reduced the growth of subcutaneous and orthotopic PC xenografts in mice by up to 65% (P < 0.02), and the growth of a human patient-derived tumor xenograft by 47.5% (P < 0.03 vs vehicle control). Mechanistically, CMC2.24 inhibited the Ras-RAF-MEK-ERK pathway. Based on Ras Pull-Down Assays, CMC2.24 inhibited Ras-GTP, the active form of Ras, in MIA PaCa-2 cells and in pancreatic acinar explants isolated from Kras mutant mice, by 90.3% and 89.1%, respectively (P < 0.01, for both). The inhibition of active Ras led to an inhibition of c-RAF, MEK, and ERK phosphorylation by 93%, 91%, and 87%, respectively (P < 0.02, for all) in PC xenografts. Furthermore, c-RAF overexpression partially rescued MIA PaCa-2 cells from the cell growth inhibition by CMC2.24. In addition, downstream of ERK, CMC2.24 inhibited STAT3 phosphorylation levels at the serine 727 residue, enhanced the levels of superoxide anion in mitochondria, and induced intrinsic apoptosis as shown by the release of cytochrome c from the mitochondria to the cytosol and the further cleavage of caspase 9 in PC cells. In conclusion, CMC2.24, a potential Ras inhibitor, is an efficacious agent for PC treatment in preclinical models, deserving further evaluation.


Asunto(s)
Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Curcumina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Curcumina/farmacología , Curcumina/uso terapéutico , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
5.
Chem Res Toxicol ; 31(12): 1382-1397, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30387604

RESUMEN

Epidemiological studies have linked aromatic amines (AAs) from tobacco smoke and some occupational exposures with bladder cancer risk. Several epidemiological studies have also reported a plausible role for structurally related heterocyclic aromatic amines present in tobacco smoke or formed in cooked meats with bladder cancer risk. DNA adduct formation is an initial biochemical event in bladder carcinogenesis. We examined paired fresh-frozen (FR) and formalin-fixed paraffin-embedded (FFPE) nontumor bladder tissues from 41 bladder cancer patients for DNA adducts of 4-aminobiphenyl (4-ABP), a bladder carcinogen present in tobacco smoke, and 2-amino-9 H-pyrido[2,3- b]indole, 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine and 2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline, possible human carcinogens, which occur in tobacco smoke and cooked meats. These chemicals are present in urine of tobacco smokers or omnivores. Targeted DNA adduct measurements were done by ultra-performance liquid chromatography-electrospray ionization multistage hybrid Orbitrap MS. N-(2'-Deoxyguanosin-8-yl)-4-ABP ( N-(dG-C8)-4-ABP) was the sole adduct detected in FR and FFPE bladder tissues. Twelve subjects (29%) had N-(dG-C8)-4-ABP levels above the limit of quantification, ranging from 1.4 to 33.8 adducts per 109 nucleotides (nt). DNA adducts of other human AA bladder carcinogens, including 2-naphthylamine (2-NA), 2-methylaniline (2-MA), 2,6-dimethylaniline (2,6-DMA), and lipid peroxidation (LPO) adducts, were screened for in bladder tissue, by our untargeted data-independent adductomics method, termed wide-selected ion monitoring (wide-SIM)/MS2. Wide-SIM/MS2 successfully detected N-(dG-C8)-4-ABP, N-(2'-deoxyadenosin-8-yl)-4-ABP and the presumed hydrazo linked adduct, N-(2'-deoxyguanosin- N2-yl)-4-ABP, and several LPO adducts in bladder DNA. Wide-SIM/MS2 detected multiple DNA adducts of 2-NA, 2-MA, and, 2,6-DMA, when calf thymus DNA was modified with reactive intermediates of these carcinogens. However, these AA-adducts were below the limit of detection in unspiked human bladder DNA (<1 adduct per 108 nt). Wide-SIM/MS2 can screen for many types of DNA adducts formed with exogenous and endogenous electrophiles and will be employed to identify DNA adducts of other chemicals that may contribute to the etiology of bladder cancer.


Asunto(s)
Aminas/química , Carcinógenos/química , Cromatografía Líquida de Alta Presión/métodos , Aductos de ADN/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Vejiga Urinaria/química , Adulto , Anciano , Anciano de 80 o más Años , Compuestos de Aminobifenilo/química , ADN/química , Femenino , Humanos , Límite de Detección , Masculino , Carne/análisis , Persona de Mediana Edad , Humo/análisis , Nicotiana/química , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/química , Neoplasias de la Vejiga Urinaria/patología
6.
Carcinogenesis ; 37(7): 647-655, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27207664

RESUMEN

Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.


Asunto(s)
Ácidos Aristolóquicos/metabolismo , Arilsulfotransferasa/genética , Complejos Multienzimáticos/genética , Sulfato Adenililtransferasa/genética , Arilsulfotransferasa/antagonistas & inhibidores , Arilsulfotransferasa/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidad , ADN/genética , ADN/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Riñón/metabolismo , Riñón/patología , Complejos Multienzimáticos/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Pentaclorofenol/farmacología , ARN Interferente Pequeño , Sulfato Adenililtransferasa/metabolismo , Xantina Deshidrogenasa/metabolismo
7.
Biopolymers ; 103(9): 491-508, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25991500

RESUMEN

The magnitude and nature of lesion-induced energetic perturbations empirically correlate with mutagenicity/cytotoxicity profiles and can be predictive of lesion outcomes during polymerase-mediated replication in vitro. In this study, we assess the sequence and counterbase-dependent energetic impact of the Thymine glycol (Tg) lesion on a family of deoxyoligonucleotide duplexes. Tg damage arises from thymine and methyl-cytosine exposure to oxidizing agents or radiation-generated free-radicals. The Tg lesion blocks polymerase-mediated DNA replication in vitro and the unrepaired site elicits cytotoxic lethal consequences in vivo. Our combined calorimetric and spectroscopic characterization correlates Tg -induced energetic perturbations with biological and structural properties. Specifically, we incorporate a 5R-Tg isomer centered within the tridecanucleotide sequence 5'-GCGTACXCATGCG-3' (X = Tg or T) which is hybridized with the corresponding complementary sequence 5'-CGCATGNGTACGC-3' (N = A, G, T, C) to generate families of Tg -damaged (Tg ·N) and lesion-free (T·N) duplexes. We demonstrate that the magnitude and nature of the Tg destabilizing impact is dependent on counterbase identity (i.e., A ∼ G < T < C). The observation that a Tg lesion is less destabilizing when positioned opposite purines suggests that favorable counterbase stacking interactions may partially compensate lesion-induced perturbations. Moreover, the destabilizing energies of Tg ·N duplexes parallel their respective lesion-free T·N mismatch counterparts (i.e., G < T < C). Elucidation of Tg-induced destabilization relative to the corresponding undamaged mismatch energetics allows resolution of lesion-specific and sequence-dependent impacts. The Tg-induced energetic perturbations are consistent with its replication blocking properties and may serve as differential recognition elements for discrimination by the cellular repair machinery.


Asunto(s)
ADN/química , Timina/análogos & derivados , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Daño del ADN/genética , Conformación de Ácido Nucleico , Termodinámica , Timina/química
8.
Carcinogenesis ; 35(8): 1814-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24743514

RESUMEN

Aristolochic acids are potent human carcinogens; the role of phase II metabolism in their bioactivation is unclear. Accordingly, we tested the ability of the partially reduced metabolites, N-hydroxyaristolactams (AL-NOHs), and their N-O-sulfonated and N-O-acetylated derivatives to react with DNA to form aristolactam-DNA adducts. AL-NOHs displayed little or no activity in this regard while the sulfo- and acetyl compounds readily form DNA adducts, as detected by (32)P-post-labeling analysis. Mouse hepatic and renal cytosols stimulated binding of AL-NOHs to DNA in the presence of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) but not of acetyl-CoA. Using Time of Flight liquid chromatography/mass spectrometry, N-hydroxyaristolactam I formed the sulfated compound in the presence of PAPS and certain human sulfotransferases, SULT1B1 >>> SULT1A2 > SULT1A1 >>> SULT1A3. The same pattern of SULT reactivity was observed when N-hydroxyaristolactam I was incubated with these enzymes and PAPS and the reaction was monitored by formation of aristolactam-DNA adducts. In the presence of human NAD(P)H: quinone oxidoreductase, the ability of aristolochic acid I to bind DNA covalently was increased significantly by addition of PAPS and SULT1B1. We conclude from these studies that AL-NOHs, formed following partial nitroreduction of aristolochic acids, serve as substrates for SULT1B1, producing N-sulfated esters, which, in turn, are converted to highly active species that react with DNA and, potentially, cellular proteins, resulting in the genotoxicity and nephrotoxicity associated with ingestion of aristolochic acids by humans.


Asunto(s)
Ácidos Aristolóquicos/farmacología , Carcinógenos/farmacología , Aductos de ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Animales , Arilsulfotransferasa/metabolismo , Western Blotting , Proliferación Celular , Células Cultivadas , Citosol/metabolismo , Aductos de ADN/metabolismo , Etanolaminas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Modelos Moleculares , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidorreductasas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ácidos Esteáricos , Sulfotransferasas/metabolismo
9.
Chem Res Toxicol ; 27(7): 1236-42, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24877584

RESUMEN

Plants from the Aristolochia genus have been recommended for the treatment of a variety of human ailments since the time of Hippocrates. However, many species produce the highly toxic aristolochic acids (AAs), which are both nephrotoxic and carcinogenic. For the purposes of extensive biological studies, a versatile approach to the synthesis of the AAs and their major metabolites was devised based primarily on a Suzuki-Miyaura coupling reaction. The key to success lies in the preparation of a common ring-A precursor, namely, the tetrahydropyranyl ether of 2-nitromethyl-3-iodo-4,5-methylendioxybenzyl alcohol (27), which was generated in excellent yield by oxidation of the aldoxime precursor 26. Suzuki-Miyaura coupling of 27 with a variety of benzaldehyde 2-boronates was accompanied by an aldol condensation/elimination reaction to give the desired phenanthrene intermediate directly. Deprotection of the benzyl alcohol followed by two sequential oxidation steps gave the desired phenanthrene nitrocarboxylic acids. This approach was used to synthesize AAs I-IV and several other related compounds, including AA I and AA II bearing an aminopropyloxy group at position-6, which were required for further conversion to fluorescent biological probes. Further successful application of the Suzuki-Miyaura coupling reaction to the synthesis of the N-hydroxyaristolactams of AA I and AA II then allowed the synthesis of the putative, but until now elusive, N-acetoxy- and N-sulfonyloxy-aristolactam metabolites.


Asunto(s)
Ácidos Aristolóquicos/síntesis química , Ácidos Aristolóquicos/química , Aductos de ADN , Lactamas/síntesis química
10.
Nucleic Acids Res ; 40(6): 2759-70, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22121223

RESUMEN

Aristolochic acids I and II are prevalent plant toxicants found in the Aristolochiaceae plant family. Metabolic activation of the aristolochic acids leads to the formation of a cyclic N-hydroxylactam product that can react with the peripheral amino group of purine bases generating bulky DNA adducts. These lesions are mutagenic and established human carcinogens. Interestingly, although AL-dG adducts progressively disappear from the DNA of laboratory animals, AL-dA lesions has lasting persistence in the genome. We describe here NMR structural studies of an undecameric duplex damaged at its center by the presence of an ALII-dA adduct. Our data establish a locally perturbed double helical structure that accommodates the bulky adduct by displacing the counter residue into the major groove and stacking the ALII moiety between flanking bases. The presence of the ALII-dA perturbs the conformation of the 5'-side flanking base pair, but all other pairs of the duplex adopt standard conformations. Thermodynamic studies reveal that the lesion slightly decreases the energy of duplex formation in a sequence-dependent manner. We discuss our results in terms of its implications for the repair of ALII-dA adducts in mammalian cells.


Asunto(s)
Adenina/análogos & derivados , Aductos de ADN/química , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Adenina/química , Adenina/metabolismo , Ácidos Aristolóquicos , Emparejamiento Base , Reparación del ADN , Desoxiadenosinas , Compuestos Heterocíclicos de 4 o más Anillos/química , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Protones , Termodinámica , Nucleótidos de Timina/química
11.
Nucleic Acids Res ; 40(6): 2494-505, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22121226

RESUMEN

Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A:T to T:A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues.


Asunto(s)
Adenina/análogos & derivados , Ácidos Aristolóquicos/toxicidad , Aductos de ADN/metabolismo , Reparación del ADN , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Mutagénesis , Mutágenos/toxicidad , Adenina/química , Adenina/metabolismo , Ácidos Aristolóquicos/química , Línea Celular , Aductos de ADN/química , Proteínas de Unión al ADN/metabolismo , Desoxiadenosinas , Genoma Humano , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Mutágenos/química
12.
Mediators Inflamm ; 2014: 959471, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25104884

RESUMEN

Tetracycline-based matrix metalloproteinase- (MMP-) inhibitors are currently approved for two inflammatory diseases, periodontitis and rosacea. The current study addresses the therapeutic potential of a novel pleiotropic MMP-inhibitor not based on an antibiotic. To induce experimental periodontitis, endotoxin (LPS) was repeatedly injected into the gingiva of rats on one side of the maxilla; the contralateral (control) side received saline injections. Two groups of rats were treated by daily oral intubation with a chemically modified curcumin, CMC 2.24, for two weeks; the control groups received vehicle alone. After sacrifice, gingiva, blood, and maxilla were collected, the jaws were defleshed, and periodontal (alveolar) bone loss was quantified morphometrically and by µ-CT scan. The gingivae were pooled per experimental group, extracted, and analyzed for MMPs (gelatin zymography; western blot) and for cytokines (e.g., IL-1ß; ELISA); serum and plasma samples were analyzed for cytokines and MMP-8. The LPS-induced pathologically excessive bone loss was reduced to normal levels based on either morphometric (P = 0.003) or µ-CT (P = 0.008) analysis. A similar response was seen for MMPs and cytokines in the gingiva and blood. This initial study, on a novel triketonic zinc-binding CMC, indicates potential efficacy on inflammatory mediators and alveolar bone loss in experimental periodontitis and warrants future therapeutic and pharmacokinetic investigations.


Asunto(s)
Curcumina/análogos & derivados , Curcumina/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Enfermedades Periodontales/tratamiento farmacológico , Periodontitis/tratamiento farmacológico , Animales , Lipopolisacáridos/farmacología , Masculino , Enfermedades Periodontales/metabolismo , Enfermedades Periodontales/patología , Periodontitis/metabolismo , Periodontitis/patología , Ratas
13.
J Enzyme Inhib Med Chem ; 29(5): 663-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24102525

RESUMEN

Curcumin (diferuloylmethane), the active ingredient in the eastern spice turmeric (Curcuma longa), has been shown to inhibit the activities of numerous enzymes and signaling molecules involved in cancer, bacterial and viral infections and inflammatory diseases. We have investigated the inhibitory activities of curcumin and chemically modified curcumin (CMC) derivatives toward lethal factor (LF), the proteolytic component of anthrax toxin produced by the bacterium Bacillus anthracis. Curcumin (Compound 1) appears to inhibit the catalytic activity of LF through a mixture of inhibitory mechanisms, without significant compromise to the binding of oligopeptide substrates, and one CMC derivative in particular, Compound 3 (4-phenylaminocarbonylbis-demethoxycurcumin), is capable of inhibiting LF with potency comparable with the parent compound, while also showing improved solubility and stability. The quantitative reduction in catalytic activity achieved by the different CMC derivatives appears to be a function of the proportion of the multiple mechanisms through which they inhibit the enzyme.


Asunto(s)
Toxinas Bacterianas/antagonistas & inhibidores , Curcumina/análogos & derivados , Curcumina/farmacología , Inhibidores Enzimáticos/farmacología , Antígenos Bacterianos/metabolismo , Bacillus anthracis/química , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Biocatálisis , Curcumina/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Relación Estructura-Actividad
14.
Virus Res ; 341: 199322, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38228190

RESUMEN

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Asunto(s)
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacología , Ipeca/farmacología , Cardiotoxicidad , Antivirales/toxicidad
15.
Nucleic Acids Res ; 39(13): 5776-89, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21415012

RESUMEN

Accumulation of damaged guanine nucleobases within genomic DNA, including the imidazole ring opened N(6)-(2-Deoxy-α,ß-D-erythro-pentafuranosyl)-2,6-diamino-4-hydroxy-5-formylamidopyrimidine (Fapy-dG), is associated with progression of age-related diseases and cancer. To evaluate the impact of this mutagenic lesion on DNA structure and energetics, we have developed a novel synthetic strategy to incorporate cognate Fapy-dG site-specifically within any oligodeoxynucleotide sequence. The scheme involves the synthesis of an oligonucleotide precursor containing a 5-nitropyrimidine moiety at the desired lesion site via standard solid-phase procedures. Following deprotection and isolation, the Fapy-dG lesion is generated by catalytic hydrogenation and subsequent formylation. NMR assignment of the Fapy-dG lesion (X) embedded within a TXT trimer reveals the presence of rotameric and anomeric species. The latter have been characterized by synthesizing the tridecamer oligodeoxynucleotide d(GCGTACXCATGCG) harboring Fapy-dG as the central residue and developing a protocol to resolve the isomeric components. Hybridization of the chromatographically isolated fractions with their complementary d(CGCATGCGTACGC) counterpart yields two Fapy-dG·C duplexes that are differentially destabilized relative to the canonical G·C parent. The resultant duplexes exhibit distinct thermal and thermodynamic profiles that are characteristic of α- and ß-anomers, the former more destabilizing than the latter. These anomer-specific impacts are discussed in terms of differential repair enzyme recognition, processing and translesion synthesis.


Asunto(s)
Daño del ADN , Formamidas/química , Furanos/química , Oligodesoxirribonucleótidos/química , Pirimidinas/química , Cromatografía por Intercambio Iónico , ADN/química , ADN de Cadena Simple/química , Isomerismo , Mutágenos/química , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/síntesis química , Oligodesoxirribonucleótidos/aislamiento & purificación , Termodinámica
16.
Mediators Inflamm ; 2013: 329740, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24453415

RESUMEN

Chronic inflammatory diseases such as periodontitis have been associated with increased risk for various medical conditions including diabetes and cardiovascular disease. Endotoxin (lipopolysaccharide, LPS), derived from gram-negative periodonto-pathogens, can induce the local accumulation of mononuclear cells in the inflammatory lesion, increasing proinflammatory cytokines and matrix metalloproteinases (MMPs). This ultimately results in the destruction of periodontal connective tissues including alveolar bone. Curcumin is the principal dyestuff in the popular Indian spice turmeric and has significant regulatory effects on inflammatory mediators but is characterized by poor solubility and low bioactivity. Recently, we developed a series of chemically modified curcumins (CMCs) with increased solubility and zinc-binding activity, while retaining, or further enhancing, their therapeutic effects. In the current study, we demonstrate that a novel CMC (CMC 2.5: 4-methoxycarbonyl curcumin) has significant inhibitory effects, better than the parent compound curcumin, on proinflammatory cytokines and MMPs in in vitro, in cell culture, and in an animal model of periodontal inflammation. The therapeutic potential of CMC 2.5 and its congeners may help to prevent tissue damage during various chronic inflammatory diseases including periodontitis and may reduce the risks of systemic diseases associated with this local disorder.


Asunto(s)
Antiinflamatorios/farmacología , Curcumina/análogos & derivados , Mediadores de Inflamación/antagonistas & inhibidores , Periodontitis/prevención & control , Animales , Células Cultivadas , Curcumina/farmacología , Curcumina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/enzimología , Diarilheptanoides , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
17.
Sci Rep ; 13(1): 15513, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726411

RESUMEN

To assess resolving-like activity by a novel chemically-modified curcumin (CMC2.24) in a "two-hit" model of diabetes-associated periodontitis. Macrophages from rats were cultured in the presence/absence of either Lipopolysaccharide (LPS, 1st hit); or advanced-glycation-end products (AGE, 2nd hit); or both combined. CMC2.24 was added as treatment. The conditioned media were analyzed for MMP-9, cytokines (IL-1ß, IL-6, TNF-α), resolvins (RvD1, RvE1, lipoxin A4), and soluble receptor for AGE (sRAGE). The phenotypes of M1/M2 macrophage were analyzed by flow cytometry. Both LPS/AGE-alone, and two-combined, dramatically increased the secretion of MMP-9 by macrophages. CMC2.24 "normalized" the elevated levels of MMP-9 under all conditions. Moreover, CMC2.24 significantly reduced the secretion of IL-1ß and IL-6 with a fewer effects on TNF-α. Importantly, CMC2.24 increased RvD1 and sRAGE secretion by macrophages exposed to LPS/AGE; and both treatment groups exhibited increased M2 relative to M1 populations. Furthermore, scatter-diagram showed the macrophages gradually shifted from M1 towards M2 with CMC2.24-treated, whereas LPS/AGE-alone groups remained unchanged. CMC2.24 "normalized" cytokines and MMP-9, but also enhanced RvD1 and sRAGE in macrophages. Crucially, CMC2.24 appears to be a potent inhibitor of the pro-inflammatory M1 phenotype; and a promotor of the pro-resolving M2 phenotype, thus acting like a crucial "switch" to reduce inflammation.


Asunto(s)
Curcumina , Animales , Ratas , Curcumina/farmacología , Metaloproteinasa 9 de la Matriz , Interleucina-6 , Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Inflamación/tratamiento farmacológico , Citocinas , Macrófagos
18.
J Inflamm Res ; 16: 779-792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860795

RESUMEN

Purpose: CMC2.24, a novel 4-(phenylaminocarbonyl)-chemically-modified-curcumin, is a pleiotropic MMP-Inhibitor of various inflammatory/collagenolytic diseases including periodontitis. This compound has demonstrated efficacy in host modulation therapy along with improved resolution of inflammation in various study models. The objective of current study is to determine the efficacy of CMC2.24 in reducing the severity of diabetes, and its long-term role as an MMP-inhibitor, in a rat model. Methods: Twenty-one adult male Sprague-Dawley rats were randomly distributed into three groups: Normal (N), Diabetic (D) and Diabetic+CMC2.24 (D+2.24). All three groups were orally administered vehicle: carboxymethylcellulose alone (N, D), or CMC2.24 (D+2.24; 30mg/kg/day). Blood was collected at 2-months and 4-months' time-point. At completion, gingival tissue and peritoneal washes were collected/analyzed, and jaws examined for alveolar bone loss by micro-CT. Additionally, sodium hypochlorite(NaClO)-activation of human-recombinant (rh) MMP-9 and its inhibition by treatment with 10µM CMC2.24, Doxycycline, and Curcumin were evaluated. Results: CMC2.24 significantly reduced the levels of lower-molecular-weight active-MMP-9 in plasma. Similar trend of reduced active-MMP-9 was also observed in cell-free peritoneal and pooled gingival extracts. Thus, treatment substantially decreased conversion of pro- to actively destructive proteinase. Normalization of the pro-inflammatory cytokine (IL-1ß, resolvin-RvD1), and diabetes-induced osteoporosis was observed in presence of CMCM2.24. CMC2.24 also exhibited significant anti-oxidant activity by inhibiting the activation of MMP-9 to a lower-molecular-weight (82kDa) pathologically active form. All these systemic and local effects were observed in the absence of reduction in severity of hyperglycemia. Conclusion: CMC2.24 reduced activation of pathologic active-MMP-9, normalized diabetic osteoporosis, and promoted resolution of inflammation but had no effect on the hyperglycemia in diabetic rats. This study also highlights the role of MMP-9 as an early/sensitive biomarker in the absence of change in any other biochemical parameter. CMC2.24 also inhibited significant activation of pro-MMP-9 by NaOCl (oxidant) adding to known mechanisms by which this compound treats collagenolytic/inflammatory diseases including periodontitis.

19.
Chem Res Toxicol ; 25(11): 2423-31, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-22897814

RESUMEN

The addition of hydroxyl radicals to the C8 position of guanine can lead to the formation of a 2,6-diamino-4-hydroxy-5-formamido-2'-deoxypyrimidine (Fapy-dG) lesion, whose endogenous levels in cellular DNA rival those of 8-oxo-7,8-dihydroxy-2'-deoxyguanosine. Despite its prevalence, the structure of duplex DNA containing Fapy-dG is unknown. We have prepared an undecameric duplex containing a centrally located ß-cFapy-dG residue paired to dC and determined its solution structure by high-resolution NMR spectroscopy and restrained molecular dynamic simulations. The damaged duplex adopts a right-handed helical structure with all residues in an anti conformation, forming Watson-Crick base pair alignments, and 2-deoxyribose conformations in the C2'-endo/C1'-exo range. The formamido group of Fapy rotates out of the pyrimidine plane and is present in the Z and E configurations that equilibrate with an approximate 2:1 population ratio. The two isomeric duplexes show similar lesion-induced deviations from a canonical B-from DNA conformation that are minor and limited to the central three-base-pair segment of the duplex, affecting the stacking interactions with the 5-lesion-neighboring residue. We discuss the implications of our observations for translesion synthesis during DNA replication and the recognition of Fapy-dG by DNA glycosylases.


Asunto(s)
ADN/química , Desoxiguanosina/química , Modelos Moleculares , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Soluciones
20.
Chem Res Toxicol ; 25(5): 1119-31, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22515372

RESUMEN

Aristolochic acids (AAs) are a structurally related family of nephrotoxic and carcinogenic nitrophenanthrene compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs have been implicated in the etiology of so-called Chinese herbs nephropathy and of Balkan endemic nephropathy. Both of these disease syndromes are associated with carcinomas of the upper urinary tract (UUC). 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I) is a principal component of Aristolochia herbs. Following metabolic activation, AA-I reacts with DNA to form aristolactam (AL-I)-DNA adducts. We have developed a sensitive analytical method, using ultraperformance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MS(n)) with a linear quadrupole ion-trap mass spectrometer, to measure 7-(deoxyadenosin-N(6)-yl) aristolactam I (dA-AL-I) and 7-(deoxyguanosin-N(2)-yl) aristolactam I (dG-AL-I) adducts. Using 10 µg of DNA for measurements, the lower limits of quantitation of dA-AL-I and dG-AL-I are, respectively, 0.3 and 1.0 adducts per 10(8) DNA bases. We have used UPLC-ESI/MS(n) to quantify AL-DNA adducts in tissues of rodents exposed to AA and in the renal cortex of patients with UUC who reside in Taiwan, where the incidence of this uncommon cancer is the highest reported for any country in the world. In human tissues, dA-AL-I was detected at levels ranging from 9 to 338 adducts per 10(8) DNA bases, whereas dG-AL-I was not found. We conclude that UPLC-ESI/MS(n) is a highly sensitive, specific and robust analytical method, positioned to supplant (32)P-postlabeling techniques currently used for biomonitoring of DNA adducts in human tissues. Importantly, UPLC-ESI/MS(n) could be used to document exposure to AA, the toxicant responsible for AA nephropathy and its associated UUC.


Asunto(s)
Ácidos Aristolóquicos/análisis , Aductos de ADN/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Adulto , Anciano , Animales , Aristolochia/química , Nefropatía de los Balcanes/etiología , Cromatografía Liquida/métodos , Femenino , Humanos , Riñón/metabolismo , Enfermedades Renales/etiología , Límite de Detección , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA