Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 175(7): 1780-1795.e19, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30392958

RESUMEN

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Glutaminasa/inmunología , Activación de Linfocitos , Células TH1/inmunología , Células Th17/inmunología , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/genética , Glutaminasa/genética , Masculino , Ratones , Ratones Transgénicos , Células TH1/citología , Células Th17/citología
2.
Nat Immunol ; 17(12): 1459-1466, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27695003

RESUMEN

CD4+ effector T cells (Teff cells) and regulatory T cells (Treg cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for Teff cell proliferation and inflammatory function, the mechanisms that regulate Treg cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote Treg cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1. However, TLR-induced mTORC1 signaling also impaired Treg cell suppressive capacity. Conversely, the transcription factor Foxp3 opposed PI(3)K-Akt-mTORC1 signaling to diminish glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Notably, Glut1 expression was sufficient to increase the number of Treg cells, but it reduced their suppressive capacity and Foxp3 expression. Thus, inflammatory signals and Foxp3 balance mTORC1 signaling and glucose metabolism to control the proliferation and suppressive function of Treg cells.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Receptores Toll-Like/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Transportador de Glucosa de Tipo 1/genética , Glucólisis , Tolerancia Inmunológica , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
3.
Immunity ; 44(1): 11-13, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789917

RESUMEN

AIF has been known to have both apoptotic and metabolic roles. Green and colleagues show that T cells, but not B cells, rely on AIF to maintain mitochondrial electron transport and that metabolic, rather than apoptotic, pathways mediate this dependence.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Linfocitos B/metabolismo , Mitocondrias/fisiología , Linfocitos T/metabolismo , Animales
4.
J Immunol ; 201(7): 1936-1945, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30127087

RESUMEN

IL-33 has pleiotropic functions in immune responses and promotes the development of allergic diseases and asthma. IL-33 induces Th2 differentiation and enhances type 2 cytokine production by CD4+ T cells. However, the regulation of IL-33-driven type 2 cytokine responses is not fully defined. In this study, we investigated the effect of PGI2, a lipid mediator formed in the cyclooxygenase pathway of arachidonic acid metabolism, on naive CD4+ T cell activation, proliferation, and differentiation by IL-33. Using wild-type and PGI2 receptor (IP) knockout mice, we found that the PGI2 analog cicaprost dose-dependently inhibited IL-33-driven IL-4, IL-5, and IL-13 production by CD4+ T cells in an IP-specific manner. In addition, cicaprost inhibited IL-33-driven IL-2 production and CD25 expression by CD4+ T cells. Furthermore, IP knockout mice had increased IL-5 and IL-13 responses of CD4+ T cells to Alternaria sensitization and challenge in mouse lungs. Because IL-33 is critical for Alternaria-induced type 2 responses, these data suggest that PGI2 not only inhibits IL-33-stimulated CD4+ Th2 cell responses in vitro but also suppresses IL-33-induced Th2 responses caused by protease-containing allergens in vivo.


Asunto(s)
Alternaria/inmunología , Alternariosis/metabolismo , Epoprostenol/análogos & derivados , Pulmón/inmunología , Células Th2/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Epoprostenol/metabolismo , Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-33/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Prostaglandina/genética
5.
Semin Immunol ; 28(5): 505-513, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27712958

RESUMEN

T cells have dramatic functional and proliferative shifts in the course of maintaining immune protection from pathogens and cancer. To support these changes, T cells undergo metabolic reprogramming upon stimulation and again after antigen clearance. Depending on the extrinsic cell signals, T cells can differentiate into functionally distinct subsets that utilize and require diverse metabolic programs. Effector T cells (Teff) enhance glucose and glutamine uptake, whereas regulatory T cells (Treg) do not rely on significant rates of glycolysis. The dependence of these subsets on specific metabolic programs makes T cells reliant on these signaling pathways and nutrients. Metabolic pathways, such as those regulated by mTOR and Myc, augment T cell glycolysis and glutaminolysis programs to promote T cell activity. These pathways respond to signals and control metabolism through both transcriptional or post-transcriptional mechanisms. Epigenetic modifications also play an important role by stabilizing the transcription factors that define subset specific reprogramming. In addition, circadian rhythm cycling may also influence energy use, immune surveillance, and function of T cells. In this review, we focus on the metabolic and nutrient requirements of T cells, and how canonical pathways of growth and metabolism regulate nutrients that are essential for T cell function.


Asunto(s)
Microambiente Celular , Metabolismo Energético , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adaptación Fisiológica , Animales , Relojes Biológicos/genética , Relojes Biológicos/inmunología , Microambiente Celular/inmunología , Epigénesis Genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal
6.
Chem Senses ; 33(7): 581-96, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18534995

RESUMEN

Sniffing, a rhythmic inhalation and exhalation of air through the nose, is a behavior thought to play a critical role in shaping how odor information is represented and processed by the nervous system. Although the mouse has become a prominent model for studying olfaction, little is known about sniffing behavior in mice. Here, we characterized mouse sniffing behavior by measuring intranasal pressure transients in behaving mice. Sniffing was monitored during unstructured exploratory behavior and during performance of 3 commonly used olfactory paradigms: a habituation/dishabituation task, a sand digging-based discrimination task, and a nose poke-based discrimination task. We found that respiration frequencies in quiescent mice ranged from 3 to 5 Hz--higher than that reported for rats. During exploration, sniff frequency increased up to approximately 12 Hz and was highly dynamic, with rapid changes in frequency, amplitude, and waveform. Sniffing behavior varied strongly between tasks as well as for different behavioral epochs of each task. For example, mice performing the digging-based task showed little increase in sniff frequency prior to digging, whereas mice performing a nose poke-based task showed robust increases. Mice showed large increases in sniff frequency prior to reward delivery in all tasks. Mice also showed increases in sniff frequency when nose poking in a nonodor-guided task. These results show that mouse sniffing behavior is highly dynamic, varies with behavioral context, and is strongly modulated by olfactory as well as nonolfactory events.


Asunto(s)
Conducta Animal/fisiología , Odorantes , Olfato/fisiología , Animales , Conducta de Elección/fisiología , Discriminación en Psicología , Habituación Psicofisiológica , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Vías Olfatorias/fisiología , Respiración
7.
Nat Med ; 24(2): 194-202, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29334372

RESUMEN

The unique metabolic demands of cancer cells underscore potentially fruitful opportunities for drug discovery in the era of precision medicine. However, therapeutic targeting of cancer metabolism has led to surprisingly few new drugs to date. The neutral amino acid glutamine serves as a key intermediate in numerous metabolic processes leveraged by cancer cells, including biosynthesis, cell signaling, and oxidative protection. Herein we report the preclinical development of V-9302, a competitive small molecule antagonist of transmembrane glutamine flux that selectively and potently targets the amino acid transporter ASCT2. Pharmacological blockade of ASCT2 with V-9302 resulted in attenuated cancer cell growth and proliferation, increased cell death, and increased oxidative stress, which collectively contributed to antitumor responses in vitro and in vivo. This is the first study, to our knowledge, to demonstrate the utility of a pharmacological inhibitor of glutamine transport in oncology, representing a new class of targeted therapy and laying a framework for paradigm-shifting therapies targeting cancer cell metabolism.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Glutamina/metabolismo , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Sistema de Transporte de Aminoácidos ASC/química , Sistema de Transporte de Aminoácidos ASC/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Modelos Animales de Enfermedad , Glutamina/química , Glutamina/genética , Células HCT116 , Humanos , Ratones , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química
8.
Cell Metab ; 26(4): 648-659.e8, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28918937

RESUMEN

Targeted cancer therapies that use genetics are successful, but principles for selectively targeting tumor metabolism that is also dependent on the environment remain unknown. We now show that differences in rate-controlling enzymes during the Warburg effect (WE), the most prominent hallmark of cancer cell metabolism, can be used to predict a response to targeting glucose metabolism. We establish a natural product, koningic acid (KA), to be a selective inhibitor of GAPDH, an enzyme we characterize to have differential control properties over metabolism during the WE. With machine learning and integrated pharmacogenomics and metabolomics, we demonstrate that KA efficacy is not determined by the status of individual genes, but by the quantitative extent of the WE, leading to a therapeutic window in vivo. Thus, the basis of targeting the WE can be encoded by molecular principles that extend beyond the status of individual genes.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Glucólisis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/uso terapéutico , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Aprendizaje Automático , Análisis de Flujos Metabólicos , Metabolómica , Ratones Endogámicos C57BL , Modelos Biológicos , Terapia Molecular Dirigida , Neoplasias/metabolismo , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Biología de Sistemas
9.
Dev Cell ; 36(5): 540-9, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26954548

RESUMEN

Cells must duplicate their mass in order to proliferate. Glucose and glutamine are the major nutrients consumed by proliferating mammalian cells, but the extent to which these and other nutrients contribute to cell mass is unknown. We quantified the fraction of cell mass derived from different nutrients and found that the majority of carbon mass in cells is derived from other amino acids, which are consumed at much lower rates than glucose and glutamine. While glucose carbon has diverse fates, glutamine contributes most to protein, suggesting that glutamine's ability to replenish tricarboxylic acid cycle intermediates (anaplerosis) is primarily used for amino acid biosynthesis. These findings demonstrate that rates of nutrient consumption are indirectly associated with mass accumulation and suggest that high rates of glucose and glutamine consumption support rapid cell proliferation beyond providing carbon for biosynthesis.


Asunto(s)
Aminoácidos/metabolismo , Carbono/metabolismo , Proliferación Celular/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Animales , Células Cultivadas , Ciclo del Ácido Cítrico/fisiología , Glutamina/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA