Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 18(9): 2715-24, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-22290835

RESUMEN

Ferric-hydroperoxo complexes have been identified as intermediates in the catalytic cycle of biological oxidants, but their role as key oxidants is still a matter of debate. Among the numerous synthetic low-spin Fe(III)(OOH) complexes characterized to date, [(L(5)(2))Fe(OOH)](2+) is the only one that has been isolated in the solid state at low temperature, which has provided a unique opportunity for inspecting its oxidizing properties under single-turnover conditions. In this report we show that [(L(5)(2))Fe(OOH)](2+) decays in the presence of aromatic substrates, such as anisole and benzene in acetonitrile, with first-order kinetics. In addition, the phenol products are formed from the aromatic substrates with similar first-order rate constants. Combining the kinetic data obtained at different temperatures and under different single-turnover experimental conditions with experiments performed under catalytic conditions by using the substrate [1,3,5-D(3)]benzene, which showed normal kinetic isotope effects (KIE>1) and a notable hydride shift (NIH shift), has allowed us to clarify the role played by Fe(III)(OOH) in aromatic oxidation. Several lines of experimental evidence in support of the previously postulated mechanism for the formation of two caged Fe(IV)(O) and OH(·) species from the Fe(III)(OOH) complex have been obtained for the first time. After homolytic O-O cleavage, a caged pair of oxidants [Fe(IV)O+HO(·)] is generated that act in unison to hydroxylate the aromatic ring: HO(·) attacks the ring to give a hydroxycyclohexadienyl radical, which is further oxidized by Fe(IV)O to give a cationic intermediate that gives rise to a NIH shift upon ketonization before the final re-aromatization step. Spin-trapping experiments in the presence of 5,5-dimethyl-1-pyrroline N-oxide and GC-MS analyses of the intermediate products further support the proposed mechanism.


Asunto(s)
Compuestos Férricos/química , Compuestos Ferrosos/química , Hemo/química , Oxidantes/química , Catálisis , Hidroxilación , Estructura Molecular , Oxidación-Reducción
2.
Dalton Trans ; 42(32): 11607-13, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23824307

RESUMEN

A mixed amine pyridine polydentate Fe(II) complex was covalently tethered in hexagonal mesoporous silica of the MCM-41 type. Metal site isolation was generated using adsorbed tetramethylammonium cations acting as a patterned silanol protecting mask and trimethylsilylazane as a capping agent. Then, the amine/pyridine ligand bearing a tethering triethoxysilane group was either grafted to such a pretreated silica surface prior to or after complexation to Fe(II). These two synthetic routes, denoted as two-step and one-step, respectively, were also applied to fumed silica for comparison, except that the silanol groups were capped after tethering the metal unit. The coordination of the targeted complex was monitored using UV-visible spectrophotometry and, according to XPS, the best control was achieved inside the channels of the mesoporous silica for the two-step route. For the solid prepared according to the one-step route, tethering of the complex occurred mainly at the entrance of the channel.


Asunto(s)
Materiales Biomiméticos/química , Hierro/química , Compuestos Organometálicos/química , Dióxido de Silicio/química , Aminas/química , Materiales Biomiméticos/síntesis química , Peróxido de Hidrógeno/química , Ligandos , Nanopartículas/química , Compuestos Organometálicos/síntesis química , Oxidantes/química , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA