RESUMEN
We generate a tabletop pulsed relativistic electron beam at 100 Hz repetition rate from vacuum laser acceleration by tightly focusing a radially polarized beam into a low-density gas. We demonstrate that strong longitudinal electric fields at the focus can accelerate electrons up to 1.43 MeV by using only 98 GW of peak laser power. The electron energy is measured as a function of laser intensity and gas species, revealing a strong dependence on the atomic ionization dynamics. These experimental results are supported by numerical simulations of particle dynamics in a tightly focused configuration that take ionization into consideration. For the range of intensities considered, it is demonstrated that atoms with higher atomic numbers like krypton can favorably inject electrons at the peak of the laser field, resulting in higher energies and an efficient acceleration mechanism that reaches a significant fraction (≈14%) of the theoretical energy gain limit.
RESUMEN
Time-delayed optical feedback is known to trigger a wide variety of complex dynamical behavior in semiconductor lasers. Adding a second optical feedback loop is naturally expected to further increase the complexity of the system and its dynamics, but due to interference between the two feedback arms, it was also quickly identified as a way to improve the laser stability. While these two aspects have already been investigated, the influence of the feedback phases, i.e., sub-wavelength changes in the mirror positions, on the laser behavior still remains to be thoroughly studied, despite indications that this parameter could have a significant impact. Here, we analyze the effect of the feedback phase on the laser stability in a dual-feedback configuration. We show an increased sensitivity of the laser system to feedback phase changes when two-feedback loops are present and clarify the interplay between the frequency shift induced by the feedback and the interferometric effect between the two feedback arms.
RESUMEN
Ultrashort laser pulses are described as having chromatic astigmatism, where the astigmatic phase varies linearly with the offset from the central frequency. Such a spatio-temporal coupling not only induces interesting space-frequency and space-time effects, but it removes cylindrical symmetry. We analyze the quantitative effects on the spatio-temporal pulse structure on the collimated beam and as it propagates through a focus, with both the fundamental Gaussian beam and Laguerre-Gaussian beams. Chromatic astigmatism is a new type of spatio-temporal coupling towards arbitrary higher complexity beams that still have a simple description, and may be applied to imaging, metrology, or ultrafast light-matter interaction.
RESUMEN
Optical parametric amplification (OPA) is a powerful tool for the generation of ultrashort light pulses. However, under certain circumstances, it develops spatio-spectral couplings, color dependent aberrations that degrade the pulse properties. In this work, we present a spatio-spectral coupling generated by a non-collimated pump beam and resulting in the change of direction of the amplified signal with respect to the input seed. We experimentally characterize the effect, introduce a theoretical model to explain it as well as reproduce it through numerical simulations. It affects high-gain non-collinear OPA configurations and becomes especially relevant in sequential optical parametric synthesizers. In collinear configuration, however, beyond the direction change, also angular and spatial chirp is produced. We obtain with a synthesizer about 40% decrease in peak intensity in the experiments and local elongation of the pulse duration by more than 25% within the spatial full width at half maximum at the focus. Finally, we present strategies to correct or mitigate the coupling and demonstrate them in two different systems. Our work is important for the development of OPA-based systems as well as few-cycle sequential synthesizers.
RESUMEN
Introducing a spatial chirp into a pulse with a longitudinal vortex, such as a standard pulsed Laguerre-Gauss beam, results in a vortex pulse with an arbitrary orientation of the phase line singularity between longitudinal and transverse, depending on the amount of chirp. Analytical expressions are given for such pulses with arbitrary topological charge valid at any propagation distance.
RESUMEN
A pulse-shaping technique in the mid-infrared spectral range based on pulses with a super-Gaussian temporal profile is considered for laser control. We show a realistic and efficient path to the population of a dark rovibrational state in acetylene (C2H2). The laser-induced dynamics in C2H2 are simulated using fully experimental structural parameters. Indeed, the rotation-vibration energy structure, including anharmonicities, is defined by the global spectroscopic Hamiltonian for the ground electronic state of C2H2 built from the extensive high-resolution spectroscopy studies on the molecule, transition dipole moments from intensities, and the effects of the (inelastic) collisions that are parameterized from line broadenings using the relaxation matrix [A. Aerts, J. Vander Auwera, and N. Vaeck, J. Chem. Phys. 154, 144308 (2021)]. The approach, based on an effective Hamiltonian, outperforms today's ab initio computations both in terms of accuracy and computational cost for this class of molecules. With such accuracy, the Hamiltonian permits studying the inner mechanism of theoretical pulse shaping [A. Aerts et al., J. Chem. Phys. 156, 084302 (2022)] for laser quantum control. Here, the generated control pulse presents a number of interferences that take advantage of the control mechanism to populate the dark state. An experimental setup is proposed for in-laboratory investigation.
RESUMEN
We present an improved model for electron acceleration in vacuum with high-energy THz pulses that includes spatiotemporal effects. In our calculations, we examined the acceleration with 300 GHz and 3.0 THz central frequency THz pulses with properties corresponding to common sources, and compared the Gaussian and Poisson spectral amplitudes and the associated time profiles of the electric fields. Our calculation takes into account both the longitudinal field and the spatio-spectral evolution around the focus. These aspects of the model are necessary due to the tight focusing and the duration towards a single-cycle of the THz pulses, respectively. The carrier-to-envelope phase (CEP) and the tilting angle of the coincident few- or single-cycle THz pulses must be tuned in all cases in order to optimize the acceleration scheme. We reveal additionally that electron beams with different final energies and different divergences can be generated based on simulated THz pulses having different Porras factors, describing the frequency dependence of the spatiotemporal amplitude profile, which may depend strongly on the method used to generate the single-cycle THz pulses.
RESUMEN
The investigation of spatio-temporal couplings (STCs) of broadband light beams is becoming a key topic for the optimization as well as applications of ultrashort laser systems. This calls for accurate measurements of STCs. Yet, it is only recently that such complete spatio-temporal or spatio-spectral characterization has become possible, and it has so far mostly been implemented at the output of the laser systems, where experiments take place. In this survey, we present for the first time STC measurements at different stages of a collection of high-power ultrashort laser systems, all based on the chirped-pulse amplification (CPA) technique, but with very different output characteristics. This measurement campaign reveals spatio-temporal effects with various sources, and motivates the expanded use of STC characterization throughout CPA laser chains, as well as in a wider range of types of ultrafast laser systems. In this way knowledge will be gained not only about potential defects, but also about the fundamental dynamics and operating regimes of advanced ultrashort laser systems.
RESUMEN
Radially polarized light beams have found many applications in particle manipulation, laser processing, and microscopy. Just as with linear polarization, radially polarized light beams can have higher-order transverse modes that involve Laguerre polynomials. Fields of a radially polarized Laguerre-Gaussian light beam have been calculated before, even beyond the paraxial approximation. However, there are in fact multiple solutions to the paraxial wave equation that involve Laguerre polynomials with different properties and propagation characteristics. We therefore clarify the discrepancies among three valid radially polarized solutions to the paraxial wave equation that involve Laguerre polynomials.
RESUMEN
Fiber Bragg gratings (FBGs) have been advantageously used to improve the chaotic properties of semiconductor lasers. Though these components are known to be highly sensitive to environmental conditions, feedback phase fluctuations are often neglected. In this work, we experimentally demonstrate that the small variations of the propagation time induced by a simple thermal tuning of the FBG are sufficient to induce significant changes of the laser behavior. We report periodic stability enhancements linked with phase variations and highlight that both phase variation and phase offsets play an important role. Last, we show a good qualitative agreement with simulations based on an expanded version of the Lang-Kobayashi model.
RESUMEN
The combination of temporal chirp with a simple chromatic aberration known as longitudinal chromatism leads to extensive control over the velocity of laser intensity in the focal region of an ultrashort laser beam. We present the first implementation of this effect on a femtosecond laser. We demonstrate that by using a specially designed and characterized lens doublet to induce longitudinal chromatism, this velocity control can be implemented independent of the parameters of the focusing optic, thus allowing for great flexibility in experimental applications. Finally, we explain and demonstrate how this spatiotemporal phenomenon evolves when imaging the ultrashort pulse focus with a magnification different from unity.
RESUMEN
Tightly focused, ultrashort radially polarized laser beams have a large longitudinal field, which provides a strong motivation for direct particle acceleration and manipulation in a vacuum. The broadband nature of these beams means that chromatic properties of propagation and focusing are important to consider. We show via single-particle simulations that using the correct frequency-dependent beam parameters is imperative, especially as the pulse duration decreases to the few-cycle regime. The results with different spatio-spectral amplitude profiles show either a drastic increase or decrease of the final accelerated electron energy depending on the shape, motivating both proper characterization and potentially a route to optimization.
RESUMEN
High-energy narrowband terahertz (THz) pulses, relevant for a plethora of applications, can be created from the interference of two chirped-pulse drive lasers. The presence of third order dispersion, an intrinsic feature of many high-energy drive lasers, however, can significantly reduce the optical-to-THz conversion efficiency and have other undesired effects. Here, we present a detailed description of the effect of third-order dispersion (TOD) in the pump pulse on the generation of THz radiation via phase-matching of broadband highly chirped pulse trains. Although the analysis is general, we focus specifically on parameters typical to a Ti:Sapphire chirped-pulse amplification laser system for quasi-phase-matching in periodically-poled lithium niobate (PPLN) in the range of THz frequencies around 0.5 THz. Our analysis provides the tools to optimize the THz generation process for applications requiring high energy and to control it to produce desired THz waveforms in a variety of scenarios.
RESUMEN
We report with single-particle simulations that longitudinal chromatism, a commonly occurring spatio-temporal coupling in ultrashort laser pulses, can have a significant influence in the longitudinal acceleration of electrons via high-power, tightly-focused, and radially polarized laser beams. This effect can be advantageous, and even more so when combined with small values of temporal chirp. However, the effect can also be highly destructive when the magnitude and sign of the longitudinal chromatism is not ideal, even at very small magnitudes. This motivates the characterization and understanding of the driving laser pulses and further study of the influence of similar low-order spatial-temporal couplings on such acceleration.
RESUMEN
High-repetition-rate high-power laser systems induce a high average power heat deposition into the gold-coated diffraction gratings. To study the effects of the thermal expansion of in-vacuum Pyrex gratings on the laser properties, we scan the pulse energy and repetition rate of a 200 TW laser system while monitoring the laser wavefront. Through the measured changes in laser divergence and focusability, we define an average power limit below which the in-vacuum compressor can be used with no degradation of the laser focus quality.
RESUMEN
We generate narrowband terahertz (THz) radiation in periodically poled lithium niobate (PPLN) crystals using two chirped-and-delayed driver pulses from a high-energy Ti:sapphire laser. The generated frequency is determined by the phase-matching condition in the PPLN and influences the temporal delay of the two pulses for efficient terahertz generation. We achieve internal conversion efficiencies up to 0.13% as well as a record multicycle THz energy of 40 µJ at 0.544 THz in a cryogenically cooled PPLN.
RESUMEN
An advanced method for hyperspectral imaging was combined with phase retrieval and standard pulse characterization techniques to characterize ultrashort laser pulses and ultrashort processes to a new level of precision in a single shot.
RESUMEN
Highly-efficient optical generation of narrowband terahertz radiation enables unexplored technologies and sciences from compact electron acceleration to charge manipulation in solids. State-of-the-art conversion efficiencies are currently achieved using difference-frequency generation driven by temporal beating of chirped pulses but remain, however, far lower than desired or predicted. Here we show that high-order spectral phase fundamentally limits the efficiency of narrowband difference-frequency generation using chirped-pulse beating and resolve this limitation by introducing a novel technique based on tuning the relative spectral phase of the pulses. For optical terahertz generation, we demonstrate a 13-fold enhancement in conversion efficiency for 1%-bandwidth, 0.361 THz pulses, yielding a record energy of 0.6 mJ and exceeding previous optically-generated energies by over an order of magnitude. Our results prove the feasibility of millijoule-scale applications like terahertz-based electron accelerators and light sources and solve the long-standing problem of temporal irregularities in the pulse trains generated by interfering chirped pulses.