Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38754421

RESUMEN

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Asunto(s)
Linfocitos T CD8-positivos , Proteínas de Unión al ADN , Interferón Tipo I , Proteínas de la Membrana , Neoplasias , Transducción de Señal , Factores de Transcripción , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Mutación , Neoplasias/inmunología , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismo
2.
Nat Methods ; 21(6): 1033-1043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684783

RESUMEN

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of PHLPP1, which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.


Asunto(s)
Procesamiento Proteico-Postraduccional , Fosforilación , Humanos , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Transducción de Señal , Células HEK293 , Proteómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Linfocitos T/metabolismo , Células Jurkat , FN-kappa B/metabolismo
3.
Plant Cell ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039020

RESUMEN

The phytohormone gibberellic acid (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis, and flowering. The Förster resonance energy transfer biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurements in vivo, has been used to observe a GA gradient correlated with cell length in dark-grown, but not light-grown, hypocotyls. We sought to understand how light signaling integrates into cellular GA regulation. Here, we show how the E3 ligase CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) play central roles in directing cellular GA distribution in skoto- and photomorphogenic hypocotyls, respectively. We demonstrate that the expression pattern of the GA biosynthetic enzyme gene GA20ox1 is the key determinant of the GA gradient in dark-grown hypocotyls and is a target of COP1 signaling. We engineered a second generation GPS2 biosensor with improved orthogonality and reversibility. GPS2 revealed a previously undetectable cellular pattern of GA depletion during the transition to growth in the light. This GA depletion partly explains the resetting of hypocotyl growth dynamics during photomorphogenesis. Achieving cell-level resolution has revealed how GA distributions link environmental conditions with morphology and morphological plasticity. The GPS2 biosensor is an ideal tool for GA studies in many conditions, organs, and plant species.

4.
Plant Cell ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012965

RESUMEN

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically-encoded second generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions and maintaining accumulation in the mature nodule meristem. We show, through mis-expression of GA catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.

5.
PLoS Biol ; 21(9): e3002303, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37733664

RESUMEN

Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.


Asunto(s)
Aracnodactilia , Optogenética , Nicotiana/genética , Escherichia coli/genética , Expresión Génica
6.
Plant Physiol ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669227

RESUMEN

Arthropod herbivory poses a serious threat to crop yield, prompting plants to employ intricate defense mechanisms against pest feeding. The generalist pest two-spotted spider mite (Tetranychus urticae) inflicts rapid damage and remains challenging due to its broad target range. In this study, we explored the Arabidopsis (Arabidopsis thaliana) response to T. urticae infestation, revealing the induction of abscisic acid (ABA), a hormone typically associated with abiotic stress adaptation, and stomatal closure during water stress. Leveraging a FRET-based ABA biosensor (nlsABACUS2-400n), we observed elevated ABA levels in various leaf cell types post-mite feeding. While ABA's role in pest resistance or susceptibility has been debated, an ABA-deficient mutant exhibited increased mite infestation alongside intact canonical biotic stress signaling, indicating an independent function of ABA in mite defense. We established that ABA-triggered stomatal closure effectively hinders mite feeding and minimizes leaf cell damage through genetic and pharmacological interventions targeting ABA levels, ABA signaling, stomatal aperture, and density. This study underscores the critical interplay between biotic and abiotic stresses in plants, highlighting how the vulnerability to mite infestation arising from open stomata, crucial for transpiration and photosynthesis, reinforces the intricate relationship between these stress types.

7.
Plant Physiol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976579

RESUMEN

Formation of the apical hook in etiolated dicot seedlings results from differential growth in the hypocotyl apex and is tightly controlled by environmental cues and hormones, among which auxin and gibberellins (GAs) play an important role. Cell expansion is tightly regulated by the cell wall, but whether and how feedback from this structure contributes to hook development is still unclear. Here, we show that etiolated seedlings of the Arabidopsis (Arabidopsis thaliana) quasimodo2-1 (qua2) mutant, defective in pectin biosynthesis, display severe defects in apical hook formation and maintenance, accompanied by loss of asymmetric auxin maxima and of differential cell expansion. Moreover, qua2 seedlings show reduced expression of HOOKLESS 1 (HLS1) and PHYTOCHROME INTERACTING FACTOR 4 (PIF4), which are positive regulators of hook formation. Treatment of wild-type seedlings with the cellulose inhibitor isoxaben (isx) also prevents hook development and represses HLS1 and PIF4 expression. Exogenous GAs, loss of DELLA proteins or HLS1 overexpression partially restore hook development in qua2 and isx-treated seedlings. Interestingly, increased agar concentration in the medium restores, both in qua2 and isx-treated seedlings, hook formation, asymmetric auxin maxima and PIF4 and HLS1 expression. Analysis of plants expressing a FRET-based GA sensor indicate that isx reduces accumulation of GAs in the apical hook region in a turgor-dependent manner. Lack of the cell wall integrity sensor THESEUS 1, which modulates turgor loss point, restores hook formation in qua2 and isx-treated seedlings. We propose that turgor-dependent signals link changes in cell wall integrity to the PIF4-HLS1 signalling module to control differential cell elongation during hook formation.

8.
J Cogn Neurosci ; : 1-17, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991125

RESUMEN

Accumulating evidence suggests that rhythmic temporal cues in the environment influence the encoding of information into long-term memory. Here, we test the hypothesis that these mnemonic effects of rhythm reflect the coupling of high-frequency (gamma) oscillations to entrained lower-frequency oscillations synchronized to the beat of the rhythm. In Study 1, we first test this hypothesis in the context of global effects of rhythm on memory, when memory is superior for visual stimuli presented in rhythmic compared with arrhythmic patterns at encoding [Jones, A., & Ward, E. V. Rhythmic temporal structure at encoding enhances recognition memory, Journal of Cognitive Neuroscience, 31, 1549-1562, 2019]. We found that rhythmic presentation of visual stimuli during encoding was associated with greater phase-amplitude coupling (PAC) between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. In Study 2, we next investigated cross-frequency PAC in the context of local effects of rhythm on memory encoding, when memory is superior for visual stimuli presented in-synchrony compared with out-of-synchrony with a background auditory beat (Hickey et al., 2020). We found that the mnemonic effect of rhythm in this context was again associated with increased cross-frequency PAC between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. Furthermore, the magnitude of gamma power modulations positively scaled with the subsequent memory benefit for in- versus out-of-synchrony stimuli. Together, these results suggest that the influence of rhythm on memory encoding may reflect the temporal coordination of higher-frequency gamma activity by entrained low-frequency oscillations.

9.
New Phytol ; 241(6): 2448-2463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308183

RESUMEN

The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo
10.
Biochem J ; 480(16): 1299-1316, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37551632

RESUMEN

Conventional protein kinase C (cPKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent the accumulation of aberrantly active enzyme. Here, we examine how a highly conserved residue in the C1A domain of cPKC isozymes permits quality-control degradation when mutated to histidine in cancer (PKCß-R42H) and blocks down-regulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (PKCγ-R41P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and down-regulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.


Asunto(s)
Neoplasias , Enfermedades Neurodegenerativas , Humanos , Isoenzimas/metabolismo , Enfermedades Neurodegenerativas/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Mutación , Neoplasias/genética
11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33602804

RESUMEN

Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Técnicas Biosensibles/métodos , Regulación de la Expresión Génica de las Plantas , Giberelinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transducción de Señal
12.
Am J Otolaryngol ; 45(3): 104214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38218029

RESUMEN

PURPOSE: To determine the occult nodal disease rate and whether elective regional lymph node dissection (RLND) confers any 10-year overall survival (OS) in cN0 intermediate-grade mucoepidermoid carcinoma (MEC) of the parotid gland. MATERIALS & METHODS: The National Cancer Database was reviewed from 2004 to 2016 on adults with cT1-4aN0M0 intermediate-grade parotid MEC undergoing resection with/without RLND. Comparisons between patients with and without RLND were made. Occult nodal rate and 10-year overall survival (OS) were determined. RESULTS: Out of 898 included patients with cN0 intermediate grade parotid MEC undergoing elective RLND, the occult nodal rate was 7.6%. This was significantly different from low-grade (3.9%) and high-grade (25.7%) cN0 disease. When stratified by pT-classification, marginal differences were identified between low-grade and intermediate-grade tumors, whereas high-grade tumors demonstrated increased occult nodal disease with low T-stage (pT1-pT2, 20.4% vs. 5.1%) and high T-stage (pT3-pT4a, 32.1% vs. 17.6%). Patients undergoing elective RLND were more often treated at an academic facility (53.8% vs. 41.2%), had higher pT3-pT4 tumors (19.2% vs. 10.4%), and more frequently underwent total/radical parotidectomy (46.0% vs. 29.9%) with adjuvant radiation therapy (53.8% vs. 41.0%) Cox-proportional hazard modeling did not identify RLND, regardless if stratified by nodal yield or pT-classification, nor nodal positivity as significant predictors of 10-year OS. CONCLUSIONS: The occult nodal disease in intermediate-grade parotid MEC is low and similar to low-grade. Elective RLND may have a limited impact on OS, though its effect on locoregional control remains unknown. LEVEL OF EVIDENCE: III.


Asunto(s)
Carcinoma Mucoepidermoide , Procedimientos Quirúrgicos Electivos , Escisión del Ganglio Linfático , Estadificación de Neoplasias , Neoplasias de la Parótida , Humanos , Carcinoma Mucoepidermoide/patología , Carcinoma Mucoepidermoide/cirugía , Carcinoma Mucoepidermoide/mortalidad , Neoplasias de la Parótida/patología , Neoplasias de la Parótida/cirugía , Neoplasias de la Parótida/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Adulto , Clasificación del Tumor , Anciano , Tasa de Supervivencia , Metástasis Linfática , Glándula Parótida/cirugía , Glándula Parótida/patología , Estudios Retrospectivos , Bases de Datos Factuales
13.
Plant Physiol ; 188(4): 2012-2025, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148416

RESUMEN

Brassinosteroids (BRs) are plant steroids that have growth-promoting capacities, which are partly enabled by an ability to induce biosynthesis of gibberellins (GAs), a second class of plant hormones. In addition, BRs can also activate GA catabolism; here we show that in Arabidopsis (Arabidopsis thaliana) the basic helix-loop-helix transcription factor CESTA (CES) and its homologues BRASSINOSTEROID-ENHANCED EXPRESSION (BEE) 1 and 3 contribute to this activity. CES and the BEEs are BR-regulated at the transcriptional and posttranslational level and participate in different physiological processes, including vegetative and reproduction development, shade avoidance, and cold stress responses. We show that CES/BEEs can induce the expression of the class III GA 2-oxidase GA2ox7 and that this activity is increased by BRs. In BR signaling - and CES/BEE-deficient mutants, GA2ox7 expression decreased, yielding reduced levels of GA110, a product of GA2ox7 activity. In plants that over-express CES, GA2ox7 expression is hyper-responsive to BR, GA110 levels are elevated and amounts of bioactive GA are reduced. We provide evidence that CES directly binds to the GA2ox7 promoter and is activated by BRs, but can also act by BR-independent means. Based on these results, we propose a model for CES activity in GA catabolism where CES can be recruited for GA2ox7 induction not only by BR, but also by other factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
14.
Nanotechnology ; 34(28)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040718

RESUMEN

Transition metal dichalcogenide (TMDC) monolayers with their direct band gap in the visible to near-infrared spectral range have emerged over the past years as highly promising semiconducting materials for optoelectronic applications. Progress in scalable fabrication methods for TMDCs like metal-organic chemical vapor deposition (MOCVD) and the ambition to exploit specific material properties, such as mechanical flexibility or high transparency, highlight the importance of suitable device concepts and processing techniques. In this work, we make use of the high transparency of TMDC monolayers to fabricate transparent light-emitting devices (LEDs). MOCVD-grown WS2is embedded as the active material in a scalable vertical device architecture and combined with a silver nanowire (AgNW) network as a transparent top electrode. The AgNW network was deposited onto the device by a spin-coating process, providing contacts with a sheet resistance below 10 Ω sq-1and a transmittance of nearly 80%. As an electron transport layer we employed a continuous 40 nm thick zinc oxide (ZnO) layer, which was grown by atmospheric pressure spatial atomic layer deposition (AP-SALD), a precise tool for scalable deposition of oxides with defined thickness. With this, LEDs with an average transmittance over 60% in the visible spectral range, emissive areas of several mm2and a turn-on voltage of around 3 V are obtained.

15.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960579

RESUMEN

Robots are becoming increasingly sophisticated in the execution of complex tasks. However, an area that requires development is the ability to act in dynamically changing environments. To advance this, developments have turned towards understanding the human brain and applying this to improve robotics. The present study used electroencephalogram (EEG) data recorded from 54 human participants whilst they performed a two-choice task. A build-up of motor activity starting around 400 ms before response onset, also known as the lateralized readiness potential (LRP), was observed. This indicates that actions are not simply binary processes but rather, response-preparation is gradual and occurs in a temporal window that can interact with the environment. In parallel, a robot arm executing a pick-and-place task was developed. The understanding from the EEG data and the robot arm were integrated into the final system, which included cell assemblies (CAs)-a simulated spiking neural network-to inform the robot to place the object left or right. Results showed that the neural data from the robot simulation were largely consistent with the human data. This neurorobotics study provides an example of how to integrate human brain recordings with simulated neural networks in order to drive a robot.


Asunto(s)
Robótica , Humanos , Robótica/métodos , Redes Neurales de la Computación , Encéfalo/fisiología , Electroencefalografía , Simulación por Computador
16.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36904627

RESUMEN

As commercial geospatial intelligence data becomes more widely available, algorithms using artificial intelligence need to be created to analyze it. Maritime traffic is annually increasing in volume, and with it the number of anomalous events that might be of interest to law enforcement agencies, governments, and militaries. This work proposes a data fusion pipeline that uses a mixture of artificial intelligence and traditional algorithms to identify ships at sea and classify their behavior. A fusion process of visual spectrum satellite imagery and automatic identification system (AIS) data was used to identify ships. Further, this fused data was further integrated with additional information about the ship's environment to help classify each ship's behavior to a meaningful degree. This type of contextual information included things such as exclusive economic zone boundaries, locations of pipelines and undersea cables, and the local weather. Behaviors such as illegal fishing, trans-shipment, and spoofing are identified by the framework using freely or cheaply accessible data from places such as Google Earth, the United States Coast Guard, etc. The pipeline is the first of its kind to go beyond the typical ship identification process to help aid analysts in identifying tangible behaviors and reducing the human workload.

17.
J Cogn Neurosci ; 34(9): 1616-1629, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604350

RESUMEN

Recent evidence suggests that temporal expectation is beneficial to memory formation. Rhythmic presentation of stimuli during encoding enhances subsequent recognition and is associated with distinct neural activity compared with when stimuli are presented in an arrhythmic manner. However, no prior study has examined how temporal expectation interacts with another important form of facilitation-spatial attention-to affect memory. This study systematically manipulated temporal expectation and spatial attention during encoding to examine their combined effect on behavioral recognition and associated ERPs. Participants performed eight experimental blocks consisting of an encoding phase and recognition test, with EEG recorded throughout. During encoding, pairs of objects and checkerboards were presented and participants were cued to attend to the left or right stream and detect targets as quickly as possible. In four blocks, stimulus presentation followed a rhythmic (constant, predictable) temporal structure, and in the other four blocks, stimulus onset was arrhythmic (random, unpredictable). An interaction between temporal expectation and spatial attention emerged, with greater recognition in the rhythmic than the arrhythmic condition for spatially attended items. Analysis of memory-specific ERP components uncovered effects of spatial attention. There were late positive component and FN400 old/new effects in the attended condition for both rhythmic and arrhythmic items, whereas in the unattended condition, there was an FN400 old/new effect and no late positive component effect. The study provides new evidence that memory improvement as a function of temporal expectation is dependent upon spatial attention.


Asunto(s)
Motivación , Reconocimiento en Psicología , Atención , Señales (Psicología) , Electroencefalografía , Potenciales Evocados , Humanos
18.
Plant Physiol ; 187(2): 590-602, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35237816

RESUMEN

Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.


Asunto(s)
Técnicas Biosensibles/métodos , Colorantes Fluorescentes , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Ingeniería Genética , Células Vegetales , Plantas/genética
19.
Diabet Med ; 39(1): e14661, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324731

RESUMEN

AIMS: Diabetic foot ulceration (DFU) is a multifactorial process involving undetected, repetitive trauma resulting in inflammation and tissue breakdown. Shear stress forms a major part of plantar load, the aim of this review is to determine whether elevated shear stress results in ulceration. METHODS: A systematic review of the Ovid Medline, EMBASE, CINAHL and Cochrane library databases was performed. Studies involving patients with diabetes who underwent plantar shear stress assessment were included. The primary outcome was plantar shear stress in patients with diabetes who had a current/previous DFU compared with those with no prior ulceration. Meta-analysis was performed comparing shear stress between those with a current or previous DFU and those without, and those with diabetes and healthy controls. RESULTS: The search strategy identified 1461 potentially relevant articles, 16 studies met the inclusion criteria, involving a total of 597 patients. Comparing shear stress between the current/previous DFU group and those without: Standardised mean difference (SMD) 0.62 (95% CI -0.01 to 1.25), in favour of greater shear stress within the DFU group, p = 0.05. Comparing shear stress between people with diabetes and healthy controls: 0.36 (95% CI -0.31 to 1.03), in favour of greater shear stress within the diabetes group, p = 0.29. CONCLUSION: This review suggests that that patients with diabetes and a history of ulceration exhibit greater shear stress than their ulcer-free counterparts. This strengthens the premise that development of systems to measure shear stress may be helpful in DFU prediction and prevention.


Asunto(s)
Pie Diabético/diagnóstico , Pie/patología , Estrés Mecánico , Humanos
20.
Mol Cell Proteomics ; 19(6): 1017-1034, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32295833

RESUMEN

Accumulation and propagation of hyperphosphorylated Tau (p-Tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating Tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-Tau pathology after injection into mouse brain. To gain an understanding of the mTau exosome cargo involved in Tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in 1) proteins uniquely present only in mTau, and not control exosomes, 2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and 3) shared proteins which were significantly upregulated or downregulated in mTau compared with control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-Tau. Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes. Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or downregulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-Tau neuropathology in mouse brain.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Exosomas/metabolismo , Neuronas/metabolismo , Proteómica , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Cromatografía Liquida , Biología Computacional , Exosomas/patología , Ontología de Genes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Neuronas/patología , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN/metabolismo , Espectrometría de Masas en Tándem , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA