Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 591(7850): 451-457, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33561864

RESUMEN

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/prevención & control , Citidina/análogos & derivados , Hidroxilaminas/administración & dosificación , Hidroxilaminas/uso terapéutico , Administración Oral , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , COVID-19/inmunología , Quimioprevención , Quirópteros/virología , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Citidina/administración & dosificación , Citidina/uso terapéutico , Citocinas/inmunología , Células Epiteliales/virología , Femenino , Xenoinjertos , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Trasplante de Pulmón , Masculino , Ratones , Profilaxis Posexposición , Profilaxis Pre-Exposición , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Replicación Viral
2.
Nature ; 587(7832): 103-108, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32999461

RESUMEN

Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.


Asunto(s)
Arabidopsis/microbiología , Comamonadaceae/clasificación , Comamonadaceae/fisiología , Microbiota/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Comamonadaceae/genética , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Microbiota/genética , Operón/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Rizosfera , Transducción de Señal
3.
Nature ; 578(7793): 160-165, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31969707

RESUMEN

Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2-9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow-liver-thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal-in combination with appropriate tools for systemic clearance of persistent HIV infection-greatly increases opportunities for HIV eradication.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , FN-kappa B/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Latencia del Virus , Alquinos/farmacología , Animales , Antirretrovirales/farmacología , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , Macaca mulatta , Ratones , Oligopéptidos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Latencia del Virus/efectos de los fármacos
4.
Gut ; 73(6): 932-940, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38443061

RESUMEN

OBJECTIVE: Colonic diverticulosis is a prevalent condition among older adults, marked by the presence of thin-walled pockets in the colon wall that can become inflamed, infected, haemorrhage or rupture. We present a case-control genetic and transcriptomic study aimed at identifying the genetic and cellular determinants underlying this condition and the relationship with other gastrointestinal disorders. DESIGN: We conducted DNA and RNA sequencing on colonic tissue from 404 patients with (N=172) and without (N=232) diverticulosis. We investigated variation in the transcriptome associated with diverticulosis and further integrated this variation with single-cell RNA-seq data from the human intestine. We also integrated our expression quantitative trait loci with genome-wide association study using Mendelian randomisation (MR). Furthermore, a Polygenic Risk Score analysis gauged associations between diverticulosis severity and other gastrointestinal disorders. RESULTS: We discerned 38 genes with differential expression and 17 with varied transcript usage linked to diverticulosis, indicating tissue remodelling as a primary diverticula formation mechanism. Diverticula formation was primarily linked to stromal and epithelial cells in the colon including endothelial cells, myofibroblasts, fibroblasts, goblet, tuft, enterocytes, neurons and glia. MR highlighted five genes including CCN3, CRISPLD2, ENTPD7, PHGR1 and TNFSF13, with potential causal effects on diverticulosis. Notably, ENTPD7 upregulation was confirmed in diverticulosis cases. Additionally, diverticulosis severity was positively correlated with genetic predisposition to diverticulitis. CONCLUSION: Our results suggest that tissue remodelling is a primary mechanism for diverticula formation. Individuals with an increased genetic proclivity to diverticulitis exhibit a larger numbers of diverticula on colonoscopy.


Asunto(s)
Diverticulosis del Colon , Estudio de Asociación del Genoma Completo , Transcriptoma , Humanos , Diverticulosis del Colon/genética , Masculino , Femenino , Anciano , Estudios de Casos y Controles , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Análisis de la Aleatorización Mendeliana , Predisposición Genética a la Enfermedad
5.
Proc Biol Sci ; 291(2025): 20240483, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889778

RESUMEN

Interspecies hybrid sterility has been extensively studied, especially in the genus Drosophila. Hybrid sterility is more often found in the heterogametic (XY or ZW) sex, a trend called Haldane's rule. Although this phenomenon is pervasive, identification of a common genetic mechanism remains elusive, with modest support found for a range of potential theories. Here, we identify a single precise morphological phenotype, which we call 'needle-eye sperm', that is associated with hybrid sterility in three separate species pairs that span the Drosophila genus. The nature of the phenotype indicates a common point of meiotic failure in sterile hybrid males. We used 10 generations of backcross selection paired with whole-genome pooled sequencing to genetically map the regions underlying the needle-eye (NE) sperm phenotype. Surprisingly, the sterility phenotype was present in ~50% of males even after 10 generations of backcrossing, and only a single region of the X chromosome was associated with sterility in one direction of backcross. Owing to the common phenotype among sterile male hybrids, and the strong effect of individual loci, further exploration of these findings may identify a universal mechanism for the evolution of hybrid sterility.


Asunto(s)
Drosophila , Infertilidad Masculina , Fenotipo , Espermatozoides , Animales , Masculino , Drosophila/genética , Drosophila/fisiología , Espermatozoides/fisiología , Infertilidad Masculina/genética , Hibridación Genética
6.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879573

RESUMEN

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Asunto(s)
Microbiota/fisiología , Inmunidad de la Planta/inmunología , Raíces de Plantas/microbiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bacterias/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Inmunidad , Microbiota/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Plantas/microbiología , Microbiología del Suelo , Simbiosis/inmunología , Virulencia
7.
Nature ; 543(7646): 513-518, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297714

RESUMEN

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Microbiota/fisiología , Fosfatos/metabolismo , Inmunidad de la Planta , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microbiota/inmunología , Mutación , Inmunidad de la Planta/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Clin Microbiol ; 60(3): e0128821, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-34985985

RESUMEN

Genomic sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to provide valuable insight into the ever-changing variant makeup of the COVID-19 pandemic. More than three million SARS-CoV-2 genome sequences have been deposited in Global Initiative on Sharing All Influenza Data (GISAID), but contributions from the United States, particularly through 2020, lagged the global effort. The primary goal of clinical microbiology laboratories is seldom rooted in epidemiologic or public health testing, and many laboratories do not contain in-house sequencing technology. However, we recognized the need for clinical microbiologists to lend expertise, share specimen resources, and partner with academic laboratories and sequencing cores to assist in SARS-CoV-2 epidemiologic sequencing efforts. Here, we describe two clinical and academic laboratory collaborations for SARS-CoV-2 genomic sequencing. We highlight roles of the clinical microbiologists and the academic laboratories, outline best practices, describe two divergent strategies in accomplishing a similar goal, and discuss the challenges with implementing and maintaining such programs.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Humanos , Laboratorios , Pandemias , SARS-CoV-2/genética
9.
PLoS Biol ; 17(11): e3000534, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31721759

RESUMEN

Phosphate starvation response (PSR) in nonmycorrhizal plants comprises transcriptional reprogramming resulting in severe physiological changes to the roots and shoots and repression of plant immunity. Thus, plant-colonizing microorganisms-the plant microbiota-are exposed to direct influence by the soil's phosphorus (P) content itself as well as to the indirect effects of soil P on the microbial niches shaped by the plant. The individual contribution of these factors to plant microbiota assembly remains unknown. To disentangle these direct and indirect effects, we planted PSR-deficient Arabidopsis mutants in a long-term managed soil P gradient and compared the composition of their shoot and root microbiota to wild-type plants across different P concentrations. PSR-deficiency had a larger effect on the composition of both bacterial and fungal plant-associated microbiota than soil P concentrations in both roots and shoots. To dissect plant-microbe interactions under variable P conditions, we conducted a microbiota reconstitution experiment. Using a 185-member bacterial synthetic community (SynCom) across a wide P concentration gradient in an agar matrix, we demonstrated a shift in the effect of bacteria on the plant from a neutral or positive interaction to a negative one, as measured by rosette size. This phenotypic shift was accompanied by changes in microbiota composition: the genus Burkholderia was specifically enriched in plant tissue under P starvation. Through a community drop-out experiment, we demonstrated that in the absence of Burkholderia from the SynCom, plant shoots accumulated higher ortophosphate (Pi) levels than shoots colonized with the full SynCom but only under Pi starvation conditions. Therefore, Pi-stressed plants are susceptible to colonization by latent opportunistic competitors found within their microbiome, thus exacerbating the plant's Pi starvation.


Asunto(s)
Arabidopsis/microbiología , Fósforo/análisis , Suelo/química , Arabidopsis/metabolismo , Burkholderia/fisiología , Microbiota , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Estrés Fisiológico
10.
Mol Ecol ; 30(10): 2404-2416, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33740826

RESUMEN

Parasites can affect and be affected by the host's microbiome, with consequences for host susceptibility, parasite transmission, and host and parasite fitness. Yet, two aspects of the relationship between parasite infection and host microbiota remain little understood: the nature of the relationship under field conditions, and how the relationship varies among parasites. To overcome these limitations, we performed a field survey of the within-leaf fungal community in a tall fescue population. We investigated how diversity and composition of the fungal microbiome associate with natural infection by fungal parasites with different feeding strategies. A parasite's feeding strategy affects both parasite requirements of the host environment and parasite impacts on the host environment. We hypothesized that parasites that more strongly modify niches available within a host will be associated with greater changes in microbiome diversity and composition. Parasites with a feeding strategy that creates necrotic tissue to extract resources (necrotrophs) may not only have different niche requirements, but also act as particularly strong niche modifiers. Barcoded amplicon sequencing of the fungal ITS region revealed that leaf segments symptomatic of necrotrophs had lower fungal diversity and distinct composition compared to segments that were asymptomatic or symptomatic of other parasites. There were no clear differences in fungal diversity or composition between leaf segments that were asymptomatic and segments symptomatic of other parasite feeding strategies. Our results motivate future experimental work to test how the relationship between the microbiome and parasite infection is impacted by parasite feeding strategy and highlight the potential importance of parasite traits.


Asunto(s)
Microbiota , Micobioma , Parásitos , Enfermedades Parasitarias , Animales , Interacciones Huésped-Parásitos , Microbiota/genética , Parásitos/genética
11.
PLoS Biol ; 16(2): e2003962, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462153

RESUMEN

Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant-bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation-responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities.


Asunto(s)
Bacterias/aislamiento & purificación , Brassicaceae/microbiología , Interacciones Microbiota-Huesped , Consorcios Microbianos , Bacterias/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Genes Bacterianos , Genes de Plantas , Fosfatos/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , ARN Ribosómico 16S/genética , Simbiosis
12.
PLoS Genet ; 14(8): e1007560, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30102700

RESUMEN

In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe. Despite the identification of cell surface receptors regulating axon guidance, how ORN axons sort to form 50 stereotypical glomeruli remains unclear. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. DIP/Dpr profiles are dynamic during development and correlate with sensilla type lineage for some ORN classes. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Animales , Axones/fisiología , Adhesión Celular , Drosophila/genética , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Técnicas de Genotipaje , Modelos Teóricos , Análisis de Secuencia de ARN
13.
Mol Ecol ; 28(20): 4667-4679, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31541560

RESUMEN

Interbreeding species often produce low-fitness hybrids due to genetic incompatibilities between parental genomes. Whether these incompatibilities reflect fixed allelic differences between hybridizing species, or, alternatively, standing variants that segregate within them, remains unknown for many natural systems. Yet, evaluating these alternatives is important for understanding the origins and nature of species boundaries. We examined these alternatives using spadefoot toads (genus Spea), which naturally hybridize. Specifically, we contrasted patterns of gene expression in hybrids relative to pure-species types in experimentally produced tadpoles from allopatric parents versus those from sympatric parents. We evaluated the prediction that segregating variation should result in gene expression differences between hybrids derived from sympatric parents versus hybrids derived from allopatric parents, and found that 24% of the transcriptome showed such differences. Our results further suggest that gene expression in hybrids has evolved in sympatry owing to evolutionary pressures associated with ongoing hybridization. Although we did not measure hybrid incompatibilities directly, we discuss the implications of our findings for understanding the nature of hybrid incompatibilities, how they might vary across populations over time, and the resulting effects on the evolutionary maintenance - or breakdown - of reproductive barriers between species.


Asunto(s)
Anuros/clasificación , Anuros/genética , Quimera/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación Genética/genética , Animales , Quimera/fisiología , Expresión Génica/genética , Larva/metabolismo , Transcriptoma/genética
14.
Blood ; 130(19): 2131-2145, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-28851699

RESUMEN

B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this "NOTCH2-BCR axis" in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8, each critical to B-cell differentiation and fate. All-trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4-to-IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5, but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity.


Asunto(s)
Linfocitos B/metabolismo , Enfermedad Injerto contra Huésped/metabolismo , Trasplante de Células Madre Hematopoyéticas , Proteínas de Neoplasias/metabolismo , Receptor Notch2/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Aloinjertos , Linfocitos B/patología , Enfermedad Crónica , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Humanos , Factores Reguladores del Interferón/biosíntesis , Factores Reguladores del Interferón/genética , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Receptor Notch2/genética , Receptores de Antígenos de Linfocitos B/genética , Tretinoina/farmacología
15.
PLoS Genet ; 12(1): e1005780, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765103

RESUMEN

Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.


Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes , Neuronas Receptoras Olfatorias , Olfato/genética , Animales , Cadherinas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/crecimiento & desarrollo , Proteínas con Homeodominio LIM/genética , Red Nerviosa/crecimiento & desarrollo , Factores de Transcripción/genética
16.
BMC Bioinformatics ; 19(1): 50, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426289

RESUMEN

BACKGROUND: Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging "hybrid" assemblies that use long reads for scaffolding and short reads for accuracy. RESULTS: We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods. We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art hybrid and long-read only de novo assembly methods. CONCLUSION: Our method accurately corrects long read sequence data using complementary short reads. We demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help better economically utilize emerging long read sequencing technologies.


Asunto(s)
Algoritmos , Bases de Datos Genéticas , Genoma Fúngico , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
17.
Nucleic Acids Res ; 44(17): 8292-301, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27530426

RESUMEN

Genomic methods are used increasingly to interrogate the individual cells that compose specific tissues. However, current methods for single cell isolation struggle to phenotypically differentiate specific cells in a heterogeneous population and rely primarily on the use of fluorescent markers. Many cellular phenotypes of interest are too complex to be measured by this approach, making it difficult to connect genotype and phenotype at the level of individual cells. Here we demonstrate that microraft arrays, which are arrays containing thousands of individual cell culture sites, can be used to select single cells based on a variety of phenotypes, such as cell surface markers, cell proliferation and drug response. We then show that a common genomic procedure, RNA-seq, can be readily adapted to the single cells isolated from these rafts. We show that data generated using microrafts and our modified RNA-seq protocol compared favorably with the Fluidigm C1. We then used microraft arrays to select pancreatic cancer cells that proliferate in spite of cytotoxic drug treatment. Our single cell RNA-seq data identified several expected and novel gene expression changes associated with early drug resistance.


Asunto(s)
Separación Celular/métodos , Genómica/métodos , Análisis por Micromatrices , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Ensayo de Tumor de Célula Madre , Gemcitabina
18.
Proc Natl Acad Sci U S A ; 112(52): 15976-81, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26598659

RESUMEN

Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.


Asunto(s)
Transferencia de Gen Horizontal , Genoma/genética , Biblioteca Genómica , Análisis de Secuencia de ADN/métodos , Tardigrada/genética , Animales , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN de Plantas/química , ADN de Plantas/genética , ADN Viral/química , ADN Viral/genética , Filogenia , Tardigrada/clasificación
19.
BMC Genomics ; 18(Suppl 4): 387, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28589866

RESUMEN

BACKGROUND: With increased availability of de novo assembly algorithms, it is feasible to study entire transcriptomes of non-model organisms. While algorithms are available that are specifically designed for performing transcriptome assembly from high-throughput sequencing data, they are very memory-intensive, limiting their applications to small data sets with few libraries. RESULTS: We develop a transcriptome assembly algorithm that recovers alternatively spliced isoforms and expression levels while utilizing as many RNA-Seq libraries as possible that contain hundreds of gigabases of data. New techniques are developed so that computations can be performed on a computing cluster with moderate amount of physical memory. CONCLUSIONS: Our strategy minimizes memory consumption while simultaneously obtaining comparable or improved accuracy over existing algorithms. It provides support for incremental updates of assemblies when new libraries become available.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Animales , Dípteros/genética , Drosophila melanogaster/genética , Ratas Topo/genética , Empalme del ARN , Análisis de Secuencia de ARN
20.
Nat Methods ; 10(10): 999-1002, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23995388

RESUMEN

We describe improvements for sequencing 16S ribosomal RNA (rRNA) amplicons, a cornerstone technique in metagenomics. Through unique tagging of template molecules before PCR, amplicon sequences can be mapped to their original templates to correct amplification bias and sequencing error with software we provide. PCR clamps block amplification of contaminating sequences from a eukaryotic host, thereby substantially enriching microbial sequences without introducing bias.


Asunto(s)
Bacterias , Clasificación/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma , ARN Ribosómico 16S/genética , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA