Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 142(10): 3243-3264, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504240

RESUMEN

Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases.


Asunto(s)
Imidazoles/farmacología , Microglía/efectos de los fármacos , Piridinas/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Enfermedad de Alzheimer/patología , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Imidazoles/metabolismo , Ratones , Ratones Transgénicos , Microglía/fisiología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neurogénesis , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Piridinas/metabolismo , Receptores de GABA/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Tauopatías/tratamiento farmacológico , Proteínas tau/genética
2.
Br J Psychiatry ; 214(1): 11-19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29764522

RESUMEN

BACKGROUND: C-reactive protein (CRP) is a candidate biomarker for major depressive disorder (MDD), but it is unclear how peripheral CRP levels relate to the heterogeneous clinical phenotypes of the disorder.AimTo explore CRP in MDD and its phenotypic associations. METHOD: We recruited 102 treatment-resistant patients with MDD currently experiencing depression, 48 treatment-responsive patients with MDD not currently experiencing depression, 48 patients with depression who were not receiving medication and 54 healthy volunteers. High-sensitivity CRP in peripheral venous blood, body mass index (BMI) and questionnaire assessments of depression, anxiety and childhood trauma were measured. Group differences in CRP were estimated, and partial least squares (PLS) analysis explored the relationships between CRP and specific clinical phenotypes. RESULTS: Compared with healthy volunteers, BMI-corrected CRP was significantly elevated in the treatment-resistant group (P = 0.007; Cohen's d = 0.47); but not significantly so in the treatment-responsive (d = 0.29) and untreated (d = 0.18) groups. PLS yielded an optimal two-factor solution that accounted for 34.7% of variation in clinical measures and for 36.0% of variation in CRP. Clinical phenotypes most strongly associated with CRP and heavily weighted on the first PLS component were vegetative depressive symptoms, BMI, state anxiety and feeling unloved as a child or wishing for a different childhood. CONCLUSIONS: CRP was elevated in patients with MDD, and more so in treatment-resistant patients. Other phenotypes associated with elevated CRP included childhood adversity and specific depressive and anxious symptoms. We suggest that patients with MDD stratified for proinflammatory biomarkers, like CRP, have a distinctive clinical profile that might be responsive to second-line treatment with anti-inflammatory drugs.Declaration of interestS.R.C. consults for Cambridge Cognition and Shire; and his input in this project was funded by a Wellcome Trust Clinical Fellowship (110049/Z/15/Z). E.T.B. is employed half time by the University of Cambridge and half time by GlaxoSmithKline; he holds stock in GlaxoSmithKline. In the past 3 years, P.J.C. has served on an advisory board for Lundbeck. N.A.H. consults for GlaxoSmithKline. P.d.B., D.N.C.J. and W.C.D. are employees of Janssen Research & Development, LLC., of Johnson & Johnson, and hold stock in Johnson & Johnson. The other authors report no financial disclosures or potential conflicts of interest.


Asunto(s)
Proteína C-Reactiva/análisis , Trastorno Depresivo Resistente al Tratamiento/diagnóstico , Adulto , Biomarcadores/sangre , Trastorno Depresivo Resistente al Tratamiento/sangre , Femenino , Humanos , Masculino , Fenotipo
3.
Transl Psychiatry ; 13(1): 185, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264010

RESUMEN

Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Factor de Necrosis Tumoral alfa , Depresión , Interleucina-6 , Proteína C-Reactiva/análisis , Inflamación/genética , Inflamación/complicaciones , ARN Mensajero/genética , Expresión Génica , Ubiquitina Tiolesterasa/genética
4.
Epilepsia ; 51(8): 1543-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20067506

RESUMEN

PURPOSE: Many patients with epilepsy are refractory to anticonvulsant drugs or do not tolerate side effects associated with the high doses required to fully prevent seizures. Antagonists of neurokinin-1 (NK1) receptors have the potential to reduce seizure severity, although this potential has not been fully explored in animals or humans. The present study was designed to evaluate the efficacy of the NK1-receptor antagonist, vofopitant, alone and in combination with different anticonvulsant drugs. METHODS: Studies were conducted in rats using a model of generalized seizure induced by electroshock. Drug concentrations in blood and brain were determined in parallel to distinguish pharmacodynamic from pharmacokinetic interactions. RESULTS: The NK1-receptor antagonist, GR205171 (vofopitant) had no anticonvulsant efficacy by itself, but could potentiate the anticonvulsant efficacy of lamotrigine and other sodium channel blockers. However, GR205171 had no effect on the anticonvulsant potency of either valproate or gabapentin. GR205171 did not produce central nervous system (CNS) side effects at the doses tested, and it did not potentiate side effects induced by high doses of lamotrigine. The NK1-receptor inactive enantiomer of GR205171, GR226206 did not potentiate the efficacy of lamotrigine, suggesting that effects observed with GR205171 were mediated by NK1 receptors. Analysis of the dose-effect relationship for GR205171 indicated that a high (>99%) occupancy of NK1 receptors is required for effect, consistent with previous behavioral and human clinical studies with this pharmacologic class. DISCUSSION: These results suggest that there may be benefit in adding treatment with a suitable NK1-receptor antagonist to treatment with a sodium channel blocker in patients with refractory epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Antagonistas del Receptor de Neuroquinina-1 , Piperidinas/uso terapéutico , Convulsiones/tratamiento farmacológico , Canales de Sodio/metabolismo , Tetrazoles/uso terapéutico , Animales , Anticonvulsivantes/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Electrochoque/efectos adversos , Masculino , Ratas , Ratas Sprague-Dawley , Convulsiones/etiología
5.
Biol Psychiatry ; 88(2): 185-196, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32000983

RESUMEN

BACKGROUND: Depression has been associated with increased inflammatory proteins, but changes in circulating immune cells are less well defined. METHODS: We used multiparametric flow cytometry to count 14 subsets of peripheral blood cells in 206 depression cases and 77 age- and sex-matched controls (N = 283). We used univariate and multivariate analyses to investigate the immunophenotypes associated with depression and depression severity. RESULTS: Depression cases, compared with controls, had significantly increased immune cell counts, especially neutrophils, CD4+ T cells, and monocytes, and increased inflammatory proteins (C-reactive protein and interleukin-6). Within-group analysis of cases demonstrated significant associations between the severity of depressive symptoms and increased myeloid and CD4+ T-cell counts. Depression cases were partitioned into 2 subgroups by forced binary clustering of cell counts: the inflamed depression subgroup (n = 81 out of 206; 39%) had increased monocyte, CD4+, and neutrophil counts; increased C-reactive protein and interleukin-6; and more severe depression than the uninflamed majority of cases. Relaxing the presumption of a binary classification, data-driven analysis identified 4 subgroups of depression cases, 2 of which (n = 38 and n = 100; 67% collectively) were associated with increased inflammatory proteins and more severe depression but differed in terms of myeloid and lymphoid cell counts. Results were robust to potentially confounding effects of age, sex, body mass index, recent infection, and tobacco use. CONCLUSIONS: Peripheral immune cell counts were used to distinguish inflamed and uninflamed subgroups of depression and to indicate that there may be mechanistically distinct subgroups of inflamed depression.


Asunto(s)
Depresión , Monocitos , Citometría de Flujo , Inmunofenotipificación , Recuento de Linfocitos
6.
Transl Psychiatry ; 10(1): 232, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32699209

RESUMEN

The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.


Asunto(s)
Glucocorticoides , Inflamasomas , Antidepresivos , Citocinas , Humanos , ARN Mensajero , Receptores de Glucocorticoides/genética
7.
Transl Psychiatry ; 10(1): 352, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077715

RESUMEN

We have corrected this Article post-publication, because Dr. Cattaneo's affiliation details were originally incorrect (she was affiliated with three institutions but is in fact only linked to one: Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia). These changes reflect in both the PDF and HTML versions of this Article.

8.
Psychopharmacology (Berl) ; 201(4): 483-94, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18762914

RESUMEN

OBJECTIVES: To test the novel nonimidazole histamine H3 receptor antagonist 5-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazapin-7-yl)oxy]-N-methyl-2-pyrazinecarboxamide (GSK207040) in a series of behavioral and neurochemical paradigms designed to evaluate its antipsychotic potential. MATERIALS AND METHODS: Acute orally administered GSK207040 was investigated for its capacity to reverse a 24-h-induced deficit in novel object recognition memory, deficits in prepulse inhibition (PPI) induced by isolation rearing, and hyperlocomotor activity induced by amphetamine. The acute neurochemical effects of GSK207040 were explored by analyzing rat anterior cingulate cortex microdialysates for levels of dopamine, noradrenaline, and acetylcholine and by c-fos immunohistochemistry. The potential for interaction with the antipsychotic dopamine D2 receptor antagonist haloperidol was explored behaviorally (spontaneous locomotor activity and catalepsy), biochemically (plasma prolactin), and via ex vivo receptor occupancy determinations. RESULTS: GSK207040 significantly enhanced object recognition memory (3 mg/kg) and attenuated isolation rearing-induced deficits in PPI (1.0 and 3.2 mg/kg) but did not reverse amphetamine-induced increases in locomotor activity. There was no evidence of an interaction of GSK207040 with haloperidol. GSK207040 (3.2 mg/kg) raised extracellular concentrations of dopamine, noradrenaline, and acetylcholine in the anterior cingulate cortex and c-fos expression in the core of the nucleus accumbens was increased at doses of 3.2 and 10.0 mg/kg. CONCLUSIONS: The behavioral and neurochemical profile of GSK207040 supports the potential of histamine H3 receptor antagonism to treat the cognitive and sensory gating deficits of schizophrenia. However, the failure of GSK207040 to reverse amphetamine-induced locomotor hyperactivity suggests that the therapeutic utility of histamine H(3) receptor antagonism versus positive symptoms is less likely, at least following acute administration.


Asunto(s)
Antipsicóticos/farmacología , Benzazepinas/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Pirazinas/farmacología , Esquizofrenia/tratamiento farmacológico , Administración Oral , Anfetamina/farmacología , Animales , Antipsicóticos/administración & dosificación , Conducta Animal/efectos de los fármacos , Benzazepinas/administración & dosificación , Relación Dosis-Respuesta a Droga , Antagonistas de los Receptores Histamínicos/administración & dosificación , Hipercinesia/inducido químicamente , Hipercinesia/prevención & control , Masculino , Memoria/efectos de los fármacos , Pirazinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores Histamínicos H3/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Esquizofrenia/fisiopatología , Aislamiento Social/psicología
9.
Synapse ; 63(10): 836-46, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19533626

RESUMEN

A hypofunction of the N-methyl-D-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. Compelling evidence of altered NMDA receptor subunit expression in the schizophrenic brain has not, however, so far emerged. Rats reared in isolation exhibit several characteristics, including disturbed sensory gating, which resemble those seen in schizophrenia. To explore the possibility that NMDA receptor dysfunction may contribute to the behavioral and neurochemical consequences of rearing rats in isolation, we compared NMDA receptor subunit expression in brains of rats which were housed in isolation and which displayed a deficit in prepulse inhibition of the acoustic startle response with that of socially housed controls. An initial microarray analysis revealed a 1.26-fold increase in NR2A transcript in the prefrontal cortex, but not in the nucleus accumbens, of rats reared in isolation compared with those housed socially. In contrast, NR1, NR2B, NR2C, NR2D, NR3A, and NR3B subunit expression was unchanged in either brain area. In a second cohort of animals, in situ hybridization revealed increased NR2A mRNA expression in the medial prefrontal cortex, an observation that was substantiated by increased [(3)H]CGP39653 binding suggesting that NR2A receptor subunit protein expression was also elevated in the medial prefrontal cortex of the same animals. No changes in expression of NR1 or NR2B subunits were observed at both mRNA and protein level. Altered NR2A subunit expression in the medial prefrontal cortex of rats reared in isolation suggests that NMDA receptor dysfunction may contribute to the underlying pathophysiology of this preclinical model of aspects of schizophrenia.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Aislamiento Social , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/metabolismo , Estimulación Acústica/efectos adversos , Animales , Animales Recién Nacidos , Perfilación de la Expresión Génica/métodos , Indoles/metabolismo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Unión Proteica/fisiología , Ensayo de Unión Radioligante/métodos , Ratas , Receptores de N-Metil-D-Aspartato/genética , Reflejo de Sobresalto/fisiología , Tritio/metabolismo
10.
Alzheimers Dement (N Y) ; 5: 241-253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31297438

RESUMEN

Since the G8 dementia summit in 2013, a number of initiatives have been established with the aim of facilitating the discovery of a disease-modifying treatment for dementia by 2025. This report is a summary of the findings and recommendations of a meeting titled "Tackling gaps in developing life-changing treatments for dementia", hosted by Alzheimer's Research UK in May 2018. The aim of the meeting was to identify, review, and highlight the areas in dementia research that are not currently being addressed by existing initiatives. It reflects the views of leading experts in the field of neurodegeneration research challenged with developing a strategic action plan to address these gaps and make recommendations on how to achieve the G8 dementia summit goals. The plan calls for significant advances in (1) translating newly identified genetic risk factors into a better understanding of the impacted biological processes; (2) enhanced understanding of selective neuronal resilience to inform novel drug targets; (3) facilitating robust and reproducible drug-target validation; (4) appropriate and evidence-based selection of appropriate subjects for proof-of-concept clinical trials; (5) improving approaches to assess drug-target engagement in humans; and (6) innovative approaches in conducting clinical trials if we are able to detect disease 10-15 years earlier than we currently do today.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA