Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 138(13): 761-775, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904187

RESUMEN

Placental insufficiency is one of the major causes of fetal growth restriction (FGR), a significant pregnancy disorder in which the fetus fails to achieve its full growth potential in utero. As well as the acute consequences of being born too small, affected offspring are at increased risk of cardiovascular disease, diabetes and other chronic diseases in later life. The placenta and heart develop concurrently, therefore placental maldevelopment and function in FGR may have profound effect on the growth and differentiation of many organ systems, including the heart. Hence, understanding the key molecular players that are synergistically linked in the development of the placenta and heart is critical. This review highlights the key growth factors, angiogenic molecules and transcription factors that are common causes of defective placental and cardiovascular development.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Humanos , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Embarazo , Femenino , Placenta/metabolismo , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/fisiopatología , Animales , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/embriología , Sistema Cardiovascular/fisiopatología , Sistema Cardiovascular/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
2.
Mol Reprod Dev ; 89(11): 540-553, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36094907

RESUMEN

Fetal growth restriction (FGR) significantly contributes to neonatal and perinatal morbidity and mortality. Currently, there are no effective treatment options for FGR during pregnancy. We have developed a nanoparticle gene therapy targeting the placenta to increase expression of human insulin-like growth factor 1 (hIGF1) to correct fetal growth trajectories. Using the maternal nutrient restriction guinea pig model of FGR, an ultrasound-guided, intraplacental injection of nonviral, polymer-based hIGF1 nanoparticle containing plasmid with the hIGF1 gene and placenta-specific Cyp19a1 promotor was administered at mid-pregnancy. Sustained hIGF1 expression was confirmed in the placenta 5 days after treatment. Whilst increased hIGF1 did not change fetal weight, circulating fetal glucose concentration were 33%-67% higher. This was associated with increased expression of glucose and amino acid transporters in the placenta. Additionally, hIGF1 nanoparticle treatment increased the fetal capillary volume density in the placenta, and reduced interhaemal distance between maternal and fetal circulation. Overall, our findings, that trophoblast-specific increased expression of hIGF1 results in changes to glucose transporter expression and increases fetal glucose concentrations within a short time period, highlights the translational potential this treatment could have in correcting impaired placental nutrient transport in human pregnancies complicated by FGR.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Nanopartículas , Animales , Cobayas , Embarazo , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Placenta/metabolismo , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Transgenes , Nutrientes , Glucosa
3.
Curr Opin Clin Nutr Metab Care ; 25(5): 292-297, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838294

RESUMEN

PURPOSE OF REVIEW: Precision health provides an unprecedented opportunity to improve the assessment of infant nutrition and health outcomes. Breastfeeding is positively associated with infant health outcomes, yet only 58.3% of children born in 2017 were still breastfeeding at 6 months. There is an urgent need to examine the application of precision health tools that support the development of public health interventions focused on improving breastfeeding outcomes. RECENT FINDINGS: In this review, we discussed the novel and highly sensitive techniques that can provide a vast amount of omics data and clinical information just by evaluating small volumes of milk samples, such as RNA sequencing, cytometry by time-of-flight, and human milk analyzer for clinical implementation. These advanced techniques can run multiple samples in a short period of time making them ideal for the routine clinical evaluation of milk samples. SUMMARY: Precision health tools are increasingly used in clinical research studies focused on infant nutrition. The integration of routinely collected multiomics human milk data within the electronic health records has the potential to identify molecular biomarkers associated with infant health outcomes.


Asunto(s)
Leche Humana , Medicina de Precisión , Lactancia Materna , Niño , Preescolar , Femenino , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante
4.
Mol Biol Evol ; 37(2): 507-523, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633784

RESUMEN

Evolution of highly invasive placentation in the stem lineage of eutherians and subsequent extension of pregnancy set eutherians apart from other mammals, that is, marsupials with short-lived placentas, and oviparous monotremes. Recent studies suggest that eutherian implantation evolved from marsupial attachment reaction, an inflammatory process induced by the direct contact of fetal placenta with maternal endometrium after the breakdown of the shell coat, and shortly before the onset of parturition. Unique to eutherians, a dramatic downregulation of inflammation after implantation prevents the onset of premature parturition, and is critical for the maintenance of gestation. This downregulation likely involved evolutionary changes on maternal as well as fetal/placental side. Tripartite-motif family-like2 (TRIML2) only exists in eutherian genomes and shows preferential expression in preimplantation embryos, and trophoblast-derived structures, such as chorion and placental disc. Comparative genomic evidence supports that TRIML2 originated from a gene duplication event in the stem lineage of Eutheria that also gave rise to eutherian TRIML1. Compared with TRIML1, TRIML2 lost the catalytic RING domain of E3 ligase. However, only TRIML2 is induced in human choriocarcinoma cell line JEG3 with poly(I:C) treatment to simulate inflammation during viral infection. Its knockdown increases the production of proinflammatory cytokines and reduces trophoblast survival during poly(I:C) stimulation, while its overexpression reduces proinflammatory cytokine production, supporting TRIML2's role as a regulatory inhibitor of the inflammatory pathways in trophoblasts. TRIML2's potential virus-interacting PRY/SPRY domain shows significant signature of selection, suggesting its contribution to the evolution of eutherian-specific inflammation regulation during placentation.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Euterios/fisiología , Inflamación/metabolismo , Poli I-C/farmacología , Animales , Evolución Biológica , Proteínas Portadoras/química , Línea Celular , Regulación hacia Abajo , Euterios/genética , Femenino , Humanos , Placentación , Embarazo , Dominios Proteicos , Especificidad de la Especie , Trofoblastos/citología , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R653-R662, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33621475

RESUMEN

Currently, there is no effective treatment for placental dysfunction in utero. In a ligated mouse model of fetal growth restriction (FGR), nanoparticle-mediated human insulin-like 1 growth factor (hIGF1) gene delivery (NP-Plac1-hIGF1) increased hIGF1 expression and maintained fetal growth. However, whether it can restore fetal growth remains to be determined. Using the endothelial nitric oxide synthase knockout (eNOS-/-) mouse model, a genetic model of FGR, we found that despite inducing expression of hIGF1 in the placentas treated with NP-Plac1-hIGF1 (P = 0.0425), FGR did not resolve. This was associated with no change to the number of fetal capillaries in the placental labyrinth; an outcome which was increased with NP-Plac1-hIGF1 treatment in the ligated mouse model, despite increased expression of angiopoietin 1 (P = 0.05), and suggested IGF1 signaling in the placenta requires eNOS to modulate placenta angiogenesis. To further assess this hypothesis, BeWo choriocarcinoma cell line and human placental explant cultures were treated with NP-Plac1-hIGF1, oxidative stress was induced with hydrogen peroxide (H2O2), and NOS activity was inhibited using the inhibitor NG-monomethyl-l-arginine (l-NMMA). In both BeWo cells and explants, the protective effect of NP-Plac1-hIGF1 treatment against H2O2-induced cell death/lactate dehydrogenase release was prevented by eNOS inhibition (P = 0.003 and P < 0.0001, respectively). This was associated with an increase in mRNA expression of oxidative stress markers hypoxia inducing factor 1α (HIF1α; P < 0.0001) and ADAM10 (P = 0.0002) in the NP-Plac1-hIGF1 + H2O2 + l-NMMA-treated BeWo cells. These findings show for the first time the requirement of eNOS/NOS in IGF1 signaling in placenta cells that may have implications for placental angiogenesis and fetal growth.


Asunto(s)
Retardo del Crecimiento Fetal/terapia , Feto/irrigación sanguínea , Terapia Genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Placenta/irrigación sanguínea , Trofoblastos/enzimología , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Retardo del Crecimiento Fetal/enzimología , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/fisiopatología , Técnicas de Transferencia de Gen , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nanopartículas , Óxido Nítrico Sintasa de Tipo III/genética , Estrés Oxidativo , Embarazo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Trofoblastos/patología
6.
Pediatr Res ; 89(7): 1673-1680, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33531677

RESUMEN

BACKGROUND: Fetal responses to adverse pregnancy environments are sex-specific. In fetal guinea pigs (GPs), we assessed morphology and messenger RNA (mRNA) expression in fetal growth-restricted (FGR) tissues at midpregnancy. METHODS: Female GPs were assigned either an ad libitum diet (C) or 30% restricted diet (R) prior to pregnancy to midpregnancy. At midpregnancy, a subset of R females underwent ultrasound-guided nanoparticle (NP) injection to enhance placental function. Five days later, fetuses were sampled. Fetal brain, heart, and liver were assessed for morphology (hematoxylin and eosin), proliferation (Ki67), and vascularization (CD31), as well as expression of inflammatory markers. RESULTS: R fetuses were 19% lighter with reduced organ weights and evidence of brain sparing compared to controls. No increased necrosis, proliferation, or vascularization was found between C and R nor male or female fetal organs. Sexual dimorphism in mRNA expression of Tgfß and Ctgf was observed in R but not C fetal brains: increased expression in females. NP treatment increased fetal brain mRNA expression of Tgfß and Ctgf in R males, abolishing the significant difference observed in untreated R fetuses. CONCLUSIONS: Sex-specific differences in mRNA expression in the fetal brain with FGR could impart a potential survival bias and may be useful for the development of treatments for obstetric diseases. IMPACT: Male and female fetuses respond differently to adverse pregnancy environments. Under fetal growth restriction conditions, inflammatory marker mRNA expression in the fetal brain was higher in females compared to males. Differences in gene expression between males and females may confer a selective advantage/disadvantage under adverse conditions. Better characterization of sexual dimorphism in fetal development will aid better development of treatments for obstetric diseases.


Asunto(s)
Encéfalo/metabolismo , Retardo del Crecimiento Fetal/terapia , Expresión Génica , Caracteres Sexuales , Animales , Femenino , Retardo del Crecimiento Fetal/genética , Cobayas , Masculino , Embarazo , ARN Mensajero/genética
7.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502440

RESUMEN

Congenital heart defects (CHD) affect approximately 1% of all live births, and often require complex surgeries at birth. We have previously demonstrated abnormal placental vascularization in human placentas from fetuses diagnosed with CHD. Hand1 has roles in both heart and placental development and is implicated in CHD development. We utilized two conditionally activated Hand1A126fs/+ murine mutant models to investigate the importance of cell-specific Hand1 on placental development in early (Nkx2-5Cre) and late (Cdh5Cre) pregnancy. Embryonic lethality occurred in Nkx2-5Cre/Hand1A126fs/+ embryos with marked fetal demise occurring after E10.5 due to a failure in placental labyrinth formation and therefore the inability to switch to hemotrophic nutrition or maintain sufficient oxygen transfer to the fetus. Labyrinthine vessels failed to develop appropriately and vessel density was significantly lower by day E12.5. In late pregnancy, the occurrence of Cdh5Cre+;Hand1A126fs/+ fetuses was reduced from 29% at E12.5 to 20% at E18.5 and remaining fetuses exhibited reduced fetal and placental weights, labyrinth vessel density and placenta angiogenic factor mRNA expression. Our results demonstrate for the first time the necessity of Hand1 in both establishment and remodeling of the exchange area beyond early pregnancy and in patterning vascularization of the placental labyrinth crucial for maintaining pregnancy and successful fetal growth.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Placenta/irrigación sanguínea , Placentación , Animales , Pérdida del Embrión , Femenino , Muerte Fetal , Cardiopatías Congénitas/etiología , Masculino , Ratones , Embarazo
8.
FASEB J ; 32(2): 717-727, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28982731

RESUMEN

Studies in humans have shown a direct association between maternal plasma cholesterol concentrations and infant birthweight. Similarly, previous studies in our laboratory have shown that chow-fed mice lacking apolipoprotein (apo) A-I, the major protein in HDL, have low HDL-cholesterol (HDL-C) concentrations and smaller fetuses in midgestation. In the current study, we measured fetal weights in mice with varying levels of apoA-I gene dose (knockout, wild-type, and transgenic) and examined metabolic pathways known to affect fetal growth. As expected, we found the differences in apoA-I expression led to changes in HDL particle size and protein cargo as well as plasma cholesterol concentrations. Fetal masses correlated directly with maternal plasma cholesterol and apoA-I concentrations, but placental masses and histology did not differ between groups of mice. There was no significant difference in glucose or amino acid transport to the fetus or in expression levels of the glucose (glucose transporter 1 and 2) or amino acid (sodium-coupled neutral amino acid transporter 1 and 2) transporters in whole placentas, although there was a trend for greater uptake of both nutrients in the whole fetal unit (fetus + placenta) of mice with greater apoA-I levels; significant differences in transport rates occurred when mice without apoA-I (knockout) vs. mice with apoA-I (wild-type and transgenic) were compared. Glucose tolerance tests were improved in the mice with the highest level of apoA-I, suggesting increased insulin-induced uptake of glucose by tissues of apoA-I transgenic mice. Thus, maternal HDL is associated with fetal growth, an effect that is likely mediated by plasma cholesterol or other HDL-cargo, including apolipoproteins or complement system proteins. A direct role of enhanced glucose and/or amino acid transport cannot be excluded.-Rebholz, S. L., Melchior, J. T., Davidson, W. S., Jones, H. N., Welge, J. A., Prentice, A. M., Moore, S. E., Woollett, L. A. Studies in genetically modified mice implicate maternal HDL as a mediator of fetal growth.


Asunto(s)
Apolipoproteína A-I/metabolismo , Colesterol/sangre , Desarrollo Fetal , Regulación del Desarrollo de la Expresión Génica , Lipoproteínas HDL/metabolismo , Placenta/metabolismo , Animales , Apolipoproteína A-I/genética , Femenino , Lipoproteínas HDL/genética , Ratones , Ratones Noqueados , Embarazo
9.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895312

RESUMEN

Fetal growth restriction (FGR) affects between 5-10% of all live births. Placental insufficiency is a leading cause of FGR, resulting in reduced nutrient and oxygen delivery to the fetus. Currently, there are no effective in utero treatment options for FGR, or placental insufficiency. We have developed a gene therapy to deliver, via a non-viral nanoparticle, human insulin-like 1 growth factor ( hIGF1 ) to the placenta as potential treatment of placenta insufficiency and FGR. Using a guinea pig maternal nutrient restriction (MNR) model of FGR, we aimed to understand the transcriptional changes within the placenta associated with placental insufficiency that occur prior to/at initiation of FGR, and the impact of short-term hIGF1 nanoparticle treatment. Using RNAsequencing, we analyzed protein coding genes of three experimental groups: Control and MNR dams receiving a sham treatment, and MNR dams receiving hIGF1 nanoparticle treatment. Pathway enrichment analysis comparing differentially expressed genelists in sham-treated MNR placentas to Control revealed upregulation of pathways associated with degradation and repair of genetic information and downregulation of pathways associated with transmembrane transport. When compared to sham-treated MNR placentas, MNR + hIGF1 placentas demonstrated changes to genelists associated with transmembrane transporter activity including ion, vitamin and solute carrier transport. Overall, this study identifies the key signaling and metabolic changes occurring in the placenta contributing to placental insufficiency prior to/at initiation of FGR, and increases our understanding of the pathways that our nanoparticle-mediated gene therapy intervention regulates. Statements and Declarations: Competing Interests: Authors declare no conflicts of interest.

10.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895421

RESUMEN

The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a non-viral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor ( hIGF1 ) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the sub-placenta/decidua that provide insight into the underlying mechanism driving placental insufficiency, and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at mid-pregnancy, and sub-placenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR sub-placenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 sub-placenta/decidua when compared to sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis indicative of homeostasis. Overall, this study identified changes to the sub-placenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on in order to restore or maintain appropriate placenta function.

11.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645174

RESUMEN

Fetal growth restriction (FGR) caused by placental insufficiency is a major contributor to neonatal morbidity and mortality. There is currently no in utero treatment for placental insufficiency or FGR. The placenta serves as the vital communication, supply, exchange, and defense organ for the developing fetus and offers an excellent opportunity for therapeutic interventions. Here we show efficacy of repeated treatments of trophoblast-specific human insulin-like 1 growth factor ( IGF1 ) gene therapy delivered in a non-viral, polymer nanoparticle to the placenta for the treatment of FGR. Using the guinea pig maternal nutrient restriction model of FGR, nanoparticle-mediated IGF1 treatment was delivered to the placenta via ultrasound guidance across the second half of pregnancy, after establishment of FGR. This treatment resulted in correction of fetal weight in MNR animals compared to control, improved fetal physiology and no negative maternal side-effects. Overall, we show for the first time a therapy capable of improving the entire pregnancy environment: maternal, placental, and fetal. This combined with our previous studies using this therapy at both mid pregnancy and in numerous cell and animal models demonstrate the plausibility of this therapy for future human translation to improve health outcomes of neonates and decrease numerous morbidities associated with the developmental origins of disease.

12.
bioRxiv ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38645086

RESUMEN

Nanoparticles offer promise as a mechanism to non-invasively deliver targeted placental therapeutics. Our previous studies utilizing intraplacental administration demonstrate efficient nanoparticle uptake into placental trophoblast cells and overexpression of human IGF1 ( hIGF1 ). Nanoparticle-mediated placental overexpression of hIGF1 in small animal models of placental insufficiency and fetal growth restriction improved nutrient transport and restored fetal growth. The objective of this pilot study was to extend these studies to the pregnant nonhuman primate and develop a method for local delivery of nanoparticles to the placenta via maternal blood flow from the uterine artery. Nanoparticles containing hIGF1 plasmid driven by the placenta-specific PLAC1 promoter were delivered to a mid-gestation pregnant rhesus macaque via a catheterization approach that is clinically used for uterine artery embolization. Maternal-fetal interface, fetal and maternal tissues were collected four days post-treatment to evaluate the efficacy of hIGF1 treatment in the placenta. The uterine artery catheterization procedure and nanoparticle treatment was well tolerated by the dam and fetus through the four-day study period following catheterization. Nanoparticles were taken up by the placenta from maternal blood as plasmid-specific hIGF1 expression was detected in multiple regions of the placenta via in situ hybridization and qPCR. The uterine artery catheterization approach enabled successful delivery of nanoparticles to maternal circulation in close proximity to the placenta with no concerns to maternal or fetal health in this short-term feasibility study. In the future, this delivery approach can be used for preclinical evaluation of the long-term safety and efficacy of nanoparticle-mediated placental therapies in a rhesus macaque model. Highlights: Novel method to deliver therapeutics to maternal-fetal interfaceDelivery of nanoparticles to the placenta via maternal catheterization.

13.
J Lipid Res ; 54(3): 725-733, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23275648

RESUMEN

Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸB, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.


Asunto(s)
Ácido Oléico/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Adulto , Aminoácidos/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Índice de Masa Corporal , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ácidos Grasos no Esterificados , Femenino , Humanos , Técnicas In Vitro , Embarazo , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
14.
J Dev Orig Health Dis ; 14(3): 325-332, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794386

RESUMEN

Fetal growth restriction (FGR) is associated with increased risk of developing non-communicable diseases. We have a placenta-specific nanoparticle gene therapy protocol that increases placental expression of human insulin-like growth factor 1 (hIGF1), for the treatment of FGR in utero. We aimed to characterize the effects of FGR on hepatic gluconeogenesis pathways during early stages of FGR establishment, and determine whether placental nanoparticle-mediated hIGF1 therapy treatment could resolve differences in the FGR fetus. Female Hartley guinea pigs (dams) were fed either a Control or Maternal Nutrient Restriction (MNR) diet using established protocols. At GD30-33, dams underwent ultrasound guided, transcutaneous, intraplacental injection of hIGF1 nanoparticle or PBS (sham) and were sacrificed 5 days post-injection. Fetal liver tissue was fixed and snap frozen for morphology and gene expression analysis. In female and male fetuses, liver weight as a percentage of body weight was reduced by MNR, and not changed with hIGF1 nanoparticle treatment. In female fetal livers, expression of hypoxia inducible factor 1 (Hif1α) and tumor necrosis factor (Tnfα) were increased in MNR compared to Control, but reduced in MNR + hIGF1 compared to MNR. In male fetal liver, MNR increased expression of Igf1 and decreased expression of Igf2 compared to Control. Igf1 and Igf2 expression was restored to Control levels in the MNR + hIGF1 group. This data provides further insight into the sex-specific mechanistic adaptations seen in FGR fetuses and demonstrates that disruption to fetal developmental mechanisms may be returned to normal by treatment of the placenta.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Animales , Cobayas , Humanos , Embarazo , Femenino , Masculino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/terapia , Placenta/metabolismo , Desarrollo Fetal/genética , Expresión Génica , Hígado/metabolismo
15.
J Am Heart Assoc ; 12(11): e028774, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37260029

RESUMEN

Background Low 5-minute Apgar scores (AS) are predictive of term and preterm neonatal mortality but have not been well studied in the critical congenital heart disease (CCHD) population. We analyzed US national vital statistics data to evaluate the association between neonatal depression (AS 0-3) and 1-year mortality in CCHD. Methods and Results We performed a retrospective cohort study using 2014 to 2018 Centers for Disease Control and Prevention cohort-linked birth certificate and infant death records. Five-minute AS were categorized as ≤3, 4 to 6, or ≥7. We calculated birth rates and associated mortality rates by AS group in infants with and without CCHD. Multivariable logistic regression analyzed neonatal, maternal, and pregnancy-related risk factors for neonatal depression and 1-year mortality. Of 11 642 neonates with CCHD (0.06% of all births), the 5.8% with AS 0 to 3 accounted for 23.3% of all 1-year CCHD mortality, with 69.9% of deaths occurring within 1 month of life. Gestational age at birth, growth restriction, extracardiac defects, race, and low maternal education were associated with an increased odds of AS 0 to 3 in neonates with CCHD relative to those with AS 7 to 10 on multivariable analysis. AS 0 to 3 was associated with 1-year CCHD mortality after adjusting for these factors, prenatal care, and delivery location (adjusted odds ratio, 14.57 [95% CI, 11.73-18.10]). Conclusions The AS is a routine clinical measure providing important prognostic information in CCHD. These findings suggest that prenatal and perinatal factors, beyond those included in current risk stratification tools, are important for CCHD outcomes. Multidisciplinary collaboration to understand the pathophysiology underlying neonatal depression may help identify interventions to improve CCHD mortality rates.


Asunto(s)
Cardiopatías Congénitas , Enfermedades del Recién Nacido , Recién Nacido , Lactante , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Cardiopatías Congénitas/epidemiología , Depresión , Edad Gestacional , Mortalidad Infantil
16.
PLoS One ; 18(3): e0279991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952446

RESUMEN

Preterm birth is a global public health crisis which results in significant neonatal and maternal mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontaneous preterm birth, and we have few diagnostic markers for adequate assessment of placental development and function. Previous studies of placental pathology and our transcriptomics studies suggest a role for placental maturity in idiopathic spontaneous preterm birth. It is known that placental DNA methylation changes over gestation. We hypothesized that if placental hypermaturity is present in our samples, we would observe a unique idiopathic spontaneous preterm birth DNA methylation profile potentially driving the gene expression differences we previously identified in our placental samples. Our results indicate the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern suggesting hypermaturity. Only seven significant differentially methylated regions fitting the idiopathic spontaneous preterm birth specific (relative to the controls) profile were identified, indicating unusually high similarity in DNA methylation between idiopathic spontaneous preterm birth and term birth samples. We identified an additional 1,718 significantly methylated regions in our gestational age matched controls where the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern, again indicating a striking level of similarity between the idiopathic spontaneous preterm birth and term birth samples. Pathway analysis of these regions revealed differences in genes within the WNT and Cadherin signaling pathways, both of which are essential in placental development and maturation. Taken together, these data demonstrate that the idiopathic spontaneous preterm birth samples display a hypermature methylation signature than expected given their respective gestational age which likely impacts birth timing.


Asunto(s)
Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Nacimiento Prematuro/patología , Placenta/metabolismo , Perfilación de la Expresión Génica , Metilación de ADN , Nacimiento a Término
17.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168281

RESUMEN

Background: Currently, there are no placenta-targeted treatments to alter the in utero environment. Water-soluble polymers have a distinguished record of clinical relevance outside of pregnancy. We have demonstrated the effective delivery of polymer-based nanoparticles containing a non-viral human insulin-like 1 growth factor ( IGF1 ) transgene to correct placental insufficiency in small animal models of fetal growth restriction (FGR). Our goal was to extend these studies to the pregnant nonhuman primate (NHP) and assess maternal, placental and fetal responses to nanoparticle-mediated IGF1 treatment. Methods: Pregnant macaques underwent ultrasound-guided intraplacental injections of nanoparticles ( GFP- or IGF1- expressing plasmid under the control of the trophoblast-specific PLAC1 promoter complexed with a HPMA-DMEAMA co-polymer) at approximately gestational day 100 (term = 165 days). Fetectomy was performed 24 h ( GFP ; n =1), 48 h ( IGF1 ; n = 3) or 10 days ( IGF1 ; n = 3) after nanoparticle delivery. Routine pathological assessment was performed on biopsied maternal tissues, and placental and fetal tissues. Maternal blood was analyzed for complete blood count (CBC), immunomodulatory proteins and growth factors, progesterone (P4) and estradiol (E2). Placental ERK/AKT/mTOR signaling was assessed using western blot and qPCR. Findings: Fluorescent microscopy and in situ hybridization confirmed placental uptake and transgene expression in villous syncytiotrophoblast. No off-target expression was observed in maternal and fetal tissues. Histopathological assessment of the placenta recorded observations not necessarily related to the IGF1 nanoparticle treatment. In maternal blood, CBCs, P4 and E2 remained within the normal range for pregnant macaques across the treatment period. Changes to placental ERK and AKT signaling at 48 h and 10 d after IGF1 nanoparticle treatment indicated an upregulation in placental homeostatic mechanisms to prevent over activity in the normal pregnancy environment. Interpretation: Maternal toxicity profile analysis and lack of adverse reaction to nanoparticle-mediated IGF1 treatment, combined with changes in placental signaling to maintain homeostasis indicates no deleterious impact of treatment. Funding: National Institutes of Health, and Wisconsin National Primate Research Center.

18.
Wound Repair Regen ; 20(4): 592-600, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22713157

RESUMEN

Cell specific gene transfer and sustained transgene expression are goals of cutaneous gene therapy for tissue repair and regeneration. Adeno-associated virus serotype 2 (AAV2/2) mediated gene transfer to the skin results in stable transgene expression in the muscle fascicles of the panniculus carnosus in mice, with minimal gene transfer to the dermal or epidermal elements. We hypothesized that pseudotyped AAV vectors may have a unique and characteristic tropism and transduction efficiency profile for specific cells in the cutaneous wounds. We compared transduction efficiencies of cells in the epidermis, cells in the dermis, and the fascicles of the panniculus carnosus by AAV2/2 and three pseudotyped AAV vectors, AAV2/5, AAV2/7, and AAV2/8 in a murine excisional wound model. AAV2/5 and AAV2/8 result in significantly enhanced transduction of cells both in the epidermis and the dermis compared to AAV2/2. AAV2/5 transduces both the basilar and supra-basilar keratinocytes. In contrast, AAV2/8 transduces mainly supra-basilar keratinocytes. Both AAV2/7 and AAV2/8 result in more efficient gene transfer to the muscular panniculus carnosus compared to AAV2/2. The capsid of the different pseudotyped AAV vectors produces distinct tropism and efficiency profiles in the murine wound healing model. Both AAV2/5 and AAV2/8 administration result in significantly enhanced gene transfer. To further characterize cell specific transduction and tropism profiles of the AAV pseudotyped vectors, we performed in vitro experiments using human and mouse primary dermal fibroblasts. Our data demonstrate that pseudotyping strategy confers a differential transduction of dermal fibroblasts, with higher transduction of both human and murine cells by AAV2/5 and AAV2/8 at early and later time points. At later time points, AAV2/2 demonstrates increased transduction. Interestingly, AAV2/8 appears to be more efficacious in transducing human cells as compared to AAV2/5. The pseudotype-specific pattern of transduction and tropism observed both in vivo and in vitro suggests that choice of AAV vectors should be based on the desired target cell and the timing of transgene expression in wound healing for gene transfer therapy in dermal wounds.


Asunto(s)
Dependovirus/fisiología , Vectores Genéticos , Infecciones por Parvoviridae/genética , Tropismo Viral , Cicatrización de Heridas , Infección de Heridas/genética , Animales , Dependovirus/aislamiento & purificación , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Vectores Genéticos/aislamiento & purificación , Queratinocitos/inmunología , Queratinocitos/patología , Ratones , Ratones Endogámicos C57BL , Infecciones por Parvoviridae/inmunología , Infecciones por Parvoviridae/patología , Infecciones por Parvoviridae/fisiopatología , Transducción Genética , Infección de Heridas/patología , Infección de Heridas/fisiopatología , Infección de Heridas/virología
19.
Artículo en Inglés | MEDLINE | ID: mdl-34995789

RESUMEN

BACKGROUND: High density lipoproteins (HDL) were first linked to cardiovascular disease (CVD) over 30 years ago when an inverse relationship was shown between CVD and HDL-cholesterol levels. It is now apparent that HDL composition and function, not cholesterol levels, are the pertinent measurements describing HDL's role in various disease processes, especially those with subclinical or overt inflammation. SCOPE OF REVIEW: Pregnancy is also an inflammatory state. When inflammation becomes excessive during pregnancy, there is an increased risk for adverse outcomes that affect the health of the mother and fetus, including preterm birth and preeclampsia. Though studies on HDL during pregnancy are limited, recent evidence demonstrates that HDL composition and function change during pregnancy and in women with adverse outcomes. GENERAL SIGNIFICANCE: In this review, we will discuss how HDL may play a role in maintaining a healthy pregnancy and how impairments in function could lead to pregnancies with adverse outcomes.


Asunto(s)
Lipoproteínas HDL
20.
Placenta ; 125: 4-9, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35414477

RESUMEN

Pregnancy complications adversely impact both mother and/or fetus throughout the lifespan. Fetal growth restriction (FGR) occurs when a fetus fails to reach their intrauterine potential for growth, it is the second highest leading cause of infant mortality, and leads to increased risk of developing non-communicable diseases in later life due 'fetal programming'. Abnormal placental development, growth and/or function underlies approximately 75% of FGR cases and there is currently no treatment save delivery, often prematurely. We previously demonstrated in a murine model of FGR that nanoparticle mediated, intra-placental human IGF-1 gene therapy maintains normal fetal growth. Multiple models of FGR currently exist reflecting the etiologies of human FGR and have been used by us and others to investigate the development of in utero therapeutics as discussed here. In addition to the in vivo models discussed herein, utilizing human models including in vitro (Choriocarcinoma cell lines and primary trophoblasts) and ex vivo (term villous fragments and placenta cotyledon perfusion) we have demonstrated robust nanoparticle uptake, transgene expression, nutrient transporter regulation without transfer to the fetus. For translational gene therapy application in the human placenta, there are multiple avenues that require investigation including syncytial uptake from the maternal circulation, transgene expression, functionality and longevity of treatment, impact of treatment on the mother and developing fetus. The potential impact of treating the placenta during gestation is high, wide-ranging across pregnancy complications, and may offer reduced risk of developing associated cardio-metabolic diseases in later life impacting at both an individual and societal level.


Asunto(s)
Insuficiencia Placentaria , Animales , Femenino , Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Humanos , Ratones , Placenta/metabolismo , Insuficiencia Placentaria/metabolismo , Placentación , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA