Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951672

RESUMEN

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Asunto(s)
Comunicación Celular/fisiología , ARN/metabolismo , Adulto , Líquidos Corporales/química , Ácidos Nucleicos Libres de Células/metabolismo , MicroARN Circulante/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Programas Informáticos
2.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37285317

RESUMEN

MOTIVATION: Extracellular particles (EPs) are the focus of a rapidly growing area of exploration due to the widespread interest in understanding their roles in health and disease. However, despite the general need for EP data sharing and established community standards for data reporting, no standard repository for EP flow cytometry data captures rigor and minimum reporting standards such as those defined by MIFlowCyt-EV (https://doi.org/10.1080/20013078.2020.1713526). We sought to address this unmet need by developing the NanoFlow Repository. RESULTS: We have developed The NanoFlow Repository to provide the first implementation of the MIFlowCyt-EV framework. AVAILABILITY AND IMPLEMENTATION: The NanoFlow Repository is freely available and accessible online at https://genboree.org/nano-ui/. Public datasets can be explored and downloaded at https://genboree.org/nano-ui/ld/datasets. The NanoFlow Repository's backend is built using the Genboree software stack that powers the ClinGen Resource, specifically the Linked Data Hub (LDH), a REST API framework written in Node.js, developed initially to aggregate data within ClinGen (https://ldh.clinicalgenome.org/ldh/ui/about). NanoFlow's LDH (NanoAPI) is available at https://genboree.org/nano-api/srvc. NanoAPI is supported by a Node.js Genboree authentication and authorization service (GbAuth), a graph database called ArangoDB, and an Apache Pulsar message queue (NanoMQ) to manage data inflows into NanoAPI. The website for NanoFlow Repository is built with Vue.js and Node.js (NanoUI) and supports all major browsers.


Asunto(s)
Programas Informáticos , Bases de Datos Factuales , Citometría de Flujo
3.
Nano Lett ; 23(20): 9195-9202, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37788377

RESUMEN

The analysis of small particles, including extracellular vesicles and viruses, is contingent on their ability to scatter sufficient light to be detected. These detection methods include flow cytometry, nanoparticle tracking analysis, and single particle reflective image sensing. To standardize measurements and enable orthogonal comparisons between platforms, a quantifiable limit of detection is required. The main parameters that dictate the amount of light scattered by particles include size, morphology, and refractive index. To date, there has been a lack of accessible techniques for measuring the refractive index of nanoparticles at a single-particle level. Here, we demonstrate two methods of deriving a small particle refractive index using orthogonal measurements with commercially available platforms. These methods can be applied at either a single-particle or population level, enabling the integration of diameter and scattering cross section values to derive the refractive index using Mie theory.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Humanos , Refractometría , Citometría de Flujo/métodos
4.
Immunity ; 38(6): 1083-5, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23809156

RESUMEN

To understand the adaptations of costimulatory molecules through mammalian evolution, Forni et al. (Forni et al., 2013) studied evolutionary selection in key costimulatory genes. Their results, presented in this issue of Immunity, suggest that the risk of autoimmmunity is balanced against efficacy of the anti-pathogen immune response.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Receptor de Muerte Celular Programada 1/genética , Linfocitos T Reguladores/inmunología , Animales , Humanos
5.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077565

RESUMEN

Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.


Asunto(s)
Conexinas , Neoplasias , Comunicación Celular , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Glucosa/metabolismo , Humanos , Neoplasias/metabolismo
6.
Cytometry A ; 97(6): 592-601, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32476280

RESUMEN

Flow cytometers have been utilized for the analysis of submicron-sized particles since the late 1970s. Initially, virus analyses preceded extracellular vesicle (EV), which began in the 1990s. Despite decades of documented use, the lack of standardization in data reporting has resulted in a growing body of literature that cannot be easily interpreted, validated, or reproduced. This has made it difficult for objective assessments of both assays and instruments, in-turn leading to significant hindrances in scientific progress, specifically in the study of EVs, where the phenotypic analysis of these submicron-sized vesicles is becoming common-place in every biomedical field. Methods for fluorescence and light scatter standardization are well established and the reagents to perform these analyses are commercially available. However, fluorescence and light scatter calibration are not widely adopted by the small particle community as methods to standardize flow cytometry (FCM) data. In this proof-of-concept study carried out as a resource for use at the CYTO2019 workshop, we demonstrate for the first-time simultaneous fluorescence and light scatter calibration of small particle data to show the ease and feasibility of this method for standardized FCM data reporting. This data was acquired using standard configuration commercial flow cytometers, with commercially available materials, published methods, and freely available software tools. We show that application of light scatter, fluorescence, and concentration calibration can result in highly concordant data between FCM platforms independent of instrument collection angle, gain/voltage settings, and flow rate; thus, providing a means of cross comparison in standard units. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Vesículas Extracelulares , Calibración , Citometría de Flujo , Humanos , Estándares de Referencia , Programas Informáticos
7.
Cytometry A ; 97(6): 569-581, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31250561

RESUMEN

The study of extracellular vesicles (EVs) is a rapidly growing field due to their great potential in many areas of clinical medicine including diagnostics, prognostics, theranostics, and therapeutics. Flow cytometry is currently one of the most popular methods of analyzing EVs due to it being a high-throughput, multiparametric technique, that is readily available in the majority of research labs. Despite its wide use, few commercial flow cytometers are designed specifically for the detection of EVs. Many flow cytometers used for EV analysis are working at their detection limits and are unable to detect the majority of EVs. Currently, very little standardization exists for EV flow cytometry, which is an issue because flow cytometers vary considerably in the way they collect scattered or fluorescent light from particles being interrogated. This makes published research hard to interpret, compare, and in some cases, impossible to reproduce. Here we demonstrate a method of flow cytometer light scatter standardization, utilizing flow cytometer postacquisition analysis software (FCMPASS ). FCMPASS is built upon Mie theory and enables the approximation of flow cytometer geometric parameters either by analyzing beads of known diameter and refractive index or by inputting the collection angle if known. The software is then able to create a scatter-diameter curve and scatter-refractive index curve that enables researchers to convert scattering data and instrument sensitivity into standardized units. Furthermore, with the correct controls, light scatter data can be converted to diameter distributions or refractive index distributions. FCMPASS therefore offers a freely available and ergonomic method of standardizing and further extending EV characterization using flow cytometry.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo , Humanos , Luz , Estándares de Referencia , Programas Informáticos
8.
Annu Rev Physiol ; 78: 243-76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26667078

RESUMEN

A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis.


Asunto(s)
Proteínas ADAM/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/fisiología , Animales , Humanos , Inflamación/metabolismo , Inflamación/patología , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología
9.
Sensors (Basel) ; 18(8)2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071576

RESUMEN

Phenotyping extracellular vesicles (EVs), where surface receptor expression is often as low as one molecule per EV, remains problematic due to the inability of commercial flow cytometers to provide single-fluorescent molecule sensitivity. While EVs are widely considered to be of great potential as diagnostic, prognostic and theranostic biomarkers, their use is currently hindered by the lack of tools available to accurately and reproducibly enumerate and phenotype them. Herein, we propose a new class of labels that leverage the biophysical properties of materials with unique complex refractive indices and demonstrate that this class of labels has the possibility of allowing single-epitope detection using conventional flow cytometry.


Asunto(s)
Biomarcadores/análisis , Vesículas Extracelulares/química , Citometría de Flujo/métodos , Refractometría , Imagen Individual de Molécula/métodos , Biomarcadores/química , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Estudios Prospectivos
10.
Platelets ; 28(3): 256-262, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28277059

RESUMEN

The composition and function of platelet-derived extracellular vesicles (EVs) in health and in disease are a major topic of investigation in biomedical research. However, efforts to delineate specific molecular repertoires and roles for different types of EVs in the circulation are limited not only by the lack of flow cytometers capable of analyzing submicron- and nano-materials across the full size spectrum of plasma EVs, but also by the lack of standardized methods and reference materials that would permit inter-laboratory reproducibility for these analyses. In this review, we summarize the flow cytometry of EVs, with a focus on platelet vesicles in plasma. In addition to delineating the basic principles that govern what precautions must be considered when using flow cytometry for the analysis of platelet vesicles, we provide an overview for how to standardize, control, annotate, and report EV flow cytometry data reproducibly, while looking forward to a next generation of high sensitivity instruments for the analysis of EVs and other submicron biomaterials in the circulation.


Asunto(s)
Plaquetas/metabolismo , Vesículas Extracelulares/metabolismo , Citometría de Flujo/normas , Artefactos , Plaquetas/citología , Forma de la Célula , Tamaño de la Célula , Vesículas Extracelulares/química , Citometría de Flujo/instrumentación , Humanos , Tamaño de la Partícula , Activación Plaquetaria , Reproducibilidad de los Resultados
11.
BMC Physiol ; 14: 3, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24678801

RESUMEN

BACKGROUND: Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice. RESULTS: Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present. CONCLUSIONS: Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.


Asunto(s)
Envejecimiento/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Miostatina/genética , Animales , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales
12.
Extracell Vesicle ; 32024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872853

RESUMEN

Antibodies are critical tools for research into extracellular vesicles (EVs) and other extracellular nanoparticles (ENPs), where they can be used for their identification, characterization, and isolation. However, the lack of a centralized antibody platform where researchers can share validation results thus minimizing wasted personnel time and reagents, has been a significant obstacle. Moreover, because the performance of antibodies varies among assay types and conditions, detailed information on assay variables and protocols is also of value. To facilitate sharing of results on antibodies that are relevant to EV/ENP research, the EV Antibody Database has been developed by the investigators of the Extracellular RNA Communication Consortium (ERCC). Hosted by the ExRNA Portal (https://exrna.org/resources/evabdb/), this interactive database aggregates and shares results from antibodies that have been tested by research groups in the EV/ENP field. Currently, the EV Antibody Database includes modules for antibodies tested for western Blot, EV Flow Cytometry, and EV Sandwich Assays, and holds 110 records contributed by 6 laboratories from the ERCC. Detailed information on antibody sources, assay conditions, and results is provided, including negative results. We encourage ongoing expert input and community feedback to enhance the database's utility, making it a valuable resource for comprehensive validation data on antibodies and protocols in EV biology.

13.
J Extracell Vesicles ; 13(6): e12463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868945

RESUMEN

Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Biomarcadores/metabolismo , Citometría de Flujo/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/análisis , Células Cultivadas , Antígenos CD/metabolismo
14.
Clin Immunol ; 148(1): 44-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23649044

RESUMEN

Radiation therapy is a widely used cancer treatment and pre-transplantation conditioning regimen that has the potential to influence anti-tumor and post-transplantation immune responses. Although conventionally fractionated radiation doses can suppress immune responses by depleting lymphocytes, single high doses of local tumor radiation can enhance immune responses. Using phospho-flow cytometry analysis of a human monocytic cell line, we identified novel radiation-induced changes in the phosphorylation state of NFκB family members known in other cell types to maintain and regulate immune function. These phosphorylation changes were p53 independent, but were strongly dependent upon ATM activation due to DNA damage. We found that radiation promotes the activation and APC functional maturation through phosphorylation of NFκB Essential Modulator (NEMO). Our results and the analytic methods are especially well suited to the study of functional changes in APC when radiation is used for immune modulation in clinical protocols.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/efectos de la radiación , Rayos gamma , Quinasa I-kappa B/inmunología , FN-kappa B/inmunología , Procesos de Crecimiento Celular/inmunología , Procesos de Crecimiento Celular/efectos de la radiación , Citometría de Flujo , Humanos , Fosforilación/efectos de la radiación , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/efectos de la radiación , Proteína p53 Supresora de Tumor/inmunología , Células U937
15.
Cell Rep Methods ; 3(12): 100664, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113854

RESUMEN

Flow cytometry (FCM) is a common method for characterizing extracellular particles (EPs), including viruses and extracellular vesicles (EVs). Frameworks such as MIFlowCyt-EV exist to provide reporting guidelines for metadata, controls, and data reporting. However, tools to optimize FCM for EP analysis in a systematic and quantitative way are lacking. Here, we demonstrate a cohesive set of methods and software tools that optimize FCM settings and facilitate cross-platform comparisons for EP studies. We introduce an automated small-particle optimization (SPOT) pipeline to optimize FCM fluorescence and light scatter detector settings for EP analysis and leverage quantitative FCM (qFCM) as a tool to further enable FCM optimization of fluorophore panel selection, laser power, pulse statistics, and window extensions. Finally, we demonstrate the value of qFCM to facilitate standardized cross-platform comparisons, irrespective of instrument configuration, settings, and sensitivity, in a cross-platform standardization study utilizing a commercially available EV reference material.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo , Colorantes Fluorescentes , Programas Informáticos , Luz
16.
Front Immunol ; 14: 1235791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622115

RESUMEN

Background and objectives: Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease. Methods: We analyzed the EVPs from the CSF of HVs, individuals with HAM, HTLV-1-infected asymptomatic carriers (ACs), and from patients with a variety of chronic neurologic diseases of both known viral and non-viral etiologies to investigate the surface repertoires of CSF EVPs during disease. Results: Significant increases in CD8+ and CD2+ EVPs were found in HAM patient CSF samples compared to other clinical groups (p = 0.0002 and p = 0.0003 compared to HVs, respectively, and p = 0.001 and p = 0.0228 compared to MS, respectively), consistent with the immunopathologically-mediated disease associated with CD8+ T-cells in the central nervous system (CNS) of HAM patients. Furthermore, CD8+ (p < 0.0001), CD2+ (p < 0.0001), CD44+ (p = 0.0176), and CD40+ (p = 0.0413) EVP signals were significantly increased in the CSF from individuals with viral infections compared to those without. Discussion: These data suggest that CD8+ and CD2+ CSF EVPs may be important as: 1) potential biomarkers and indicators of disease pathways for viral-mediated neurological diseases, particularly HAM, and 2) as possible meditators of the disease process in infected individuals.


Asunto(s)
Vesículas Extracelulares , Enfermedades del Sistema Nervioso , Paraparesia Espástica Tropical , Humanos , Sistema Nervioso Central , Antígenos CD40 , Enfermedad Crónica
17.
J Clin Invest ; 134(4)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127463

RESUMEN

In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow-derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding ß-galactosylceramide (ßGalCer) without sulfate. C24:2 induced IFN-γ-dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell-stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid's function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.


Asunto(s)
Células T Asesinas Naturales , Neoplasias , Humanos , Sulfoglicoesfingolípidos/metabolismo , Antígenos CD1d/genética , Presentación de Antígeno , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Sulfatos/metabolismo
18.
J Extracell Vesicles ; 12(2): e12299, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36759917

RESUMEN

Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo/métodos , Reproducibilidad de los Resultados
19.
J Extracell Vesicles ; 12(12): e12385, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38063210

RESUMEN

Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Reproducibilidad de los Resultados , Plasma
20.
Ann N Y Acad Sci ; 1523(1): 24-37, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961472

RESUMEN

Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Humanos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA