Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Neuropathol Appl Neurobiol ; 49(4): e12925, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37465879

RESUMEN

AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with complex aetiology. Despite evidence of neuromuscular junction (NMJ) denervation and 'dying-back' pathology in models of SOD1-dependent ALS, evidence in other genetic forms of ALS is limited by a lack of suitable animal models. TDP-43, a key mediator protein in ALS, is overexpressed in neurons in Thy1-hTDP-43WT mice. We therefore aimed to comprehensively analyse NMJ pathology in this model of ALS. METHODS: Expression of TDP-43 was assessed via western blotting. Immunohistochemistry techniques, alongside NMJ-morph quantification, were used to analyse motor neuron number, NMJ denervation status and terminal Schwann cell morphology. RESULTS: We present a time course of progressive, region-specific motor neuron pathology in Thy1-hTDP-43WT mice. Thy1-driven hTDP-43 expression increased steadily, correlating with developing hindlimb motor weakness and associated motor neuron loss in the spinal cord with a median survival of 21 days. Pronounced NMJ denervation was observed in hindlimb muscles, mild denervation in cranial muscles but no evidence of denervation in either forelimb or trunk muscles. NMJ pathology was restricted to motor nerve terminals, with denervation following the same time course as motor neuron loss. Terminal Schwann cells were lost from NMJs in hindlimb muscles, directly correlating with denervation status. CONCLUSIONS: Thy1-hTDP-43WT mice represent a severe model of ALS, with NMJ pathology/denervation of distal muscles and motor neuron loss, as observed in ALS patients. This model therefore provides an ideal platform to investigate mechanisms of dying-back pathology, as well as NMJ-targeting disease-modifying therapies in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Esclerosis Amiotrófica Lateral/patología , Enfermedades Neurodegenerativas/patología , Unión Neuromuscular/patología , Neuronas Motoras/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Desnervación , Proteínas de Unión al ADN/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
J Cell Physiol ; 237(11): 4303-4316, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36166694

RESUMEN

Vascular calcification is associated with aging, type 2 diabetes, and atherosclerosis, and increases the risk of cardiovascular morbidity and mortality. It is an active, highly regulated process that resembles physiological bone formation. It has previously been established that pharmacological doses of metformin alleviate arterial calcification through adenosine monophosphate-activated protein kinase (AMPK)-activated autophagy, however the specific pathway remains elusive. In the present study we hypothesized that metformin protects against arterial calcification through the direct autophagic degradation of runt-related transcription factor 2 (Runx2). Calcification was blunted in vascular smooth muscle cells (VSMCs) by metformin in a dose-dependent manner (0.5-1.5 mM) compared to control cells (p < 0.01). VSMCs cultured under high-phosphate (Pi) conditions in the presence of metformin (1 mM) showed a significant increase in LC3 puncta following bafilomycin-A1 (Baf-A; 5 nM) treatment compared to control cells (p < 0.001). Furthermore, reduced expression of Runx2 was observed in the nuclei of metformin-treated calcifying VSMCs (p < 0.0001). Evaluation of the functional role of autophagy through Atg3 knockdown in VSMCs showed aggravated Pi-induced calcification (p < 0.0001), failure to induce autophagy (punctate LC3) (p < 0.001) and increased nuclear Runx2 expression (p < 0.0001) in VSMCs cultured under high Pi conditions in the presence of metformin (1 mM). Mechanistic studies employing three-way coimmunoprecipitation with Runx2, p62, and LC3 revealed that p62 binds to both LC3 and Runx2 upon metformin treatment in VSMCs. Furthermore, immunoblotting with LC3 revealed that Runx2 specifically binds with p62 and LC3-II in metformin-treated calcified VSMCs. Lastly, we investigated the importance of the autophagy pathway in vascular calcification in a clinical setting. Ex vivo clinical analyses of calcified diabetic lower limb artery tissues highlighted a negative association between Runx2 and LC3 in the vascular calcification process. These studies suggest that exploitation of metformin and its analogues may represent a novel therapeutic strategy for clinical intervention through the induction of AMPK/Autophagy Related 3 (Atg3)-dependent autophagy and the subsequent p62-mediated autophagic degradation of Runx2.


Asunto(s)
Metformina , Calcificación Vascular , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metformina/efectos adversos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/prevención & control
3.
Hum Mol Genet ; 29(16): 2647-2661, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32686835

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an incurable neurological disease with progressive loss of motor neuron (MN) function in the brain and spinal cord. Mutations in TARDBP, encoding the RNA-binding protein TDP-43, are one cause of ALS, and TDP-43 mislocalization in MNs is a key pathological feature of >95% of ALS cases. While numerous studies support altered RNA regulation by TDP-43 as a major cause of disease, specific changes within MNs that trigger disease onset remain unclear. Here, we combined translating ribosome affinity purification (TRAP) with RNA sequencing to identify molecular changes in spinal MNs of TDP-43-driven ALS at motor symptom onset. By comparing the MN translatome of hTDP-43A315T mice to littermate controls and to mice expressing wild type hTDP-43, we identified hundreds of mRNAs that were selectively up- or downregulated in MNs. We validated the deregulated candidates Tex26, Syngr4, and Plekhb1 mRNAs in an independent TRAP experiment. Moreover, by quantitative immunostaining of spinal cord MNs, we found corresponding protein level changes for SYNGR4 and PLEKHB1. We also observed these changes in spinal MNs of an independent ALS mouse model caused by a different patient mutant allele of TDP-43, suggesting that they are general features of TDP-43-driven ALS. Thus, we identified SYNGR4 and PLEKHB1 to be deregulated in MNs at motor symptom onset in TDP-43-driven ALS models. This spatial and temporal pattern suggests that these proteins could be functionally important for driving the transition to the symptomatic phase of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de la Membrana/genética , Sinaptogirinas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Biosíntesis de Proteínas/genética , RNA-Seq , Médula Espinal/metabolismo , Médula Espinal/patología
4.
J Anat ; 241(5): 1120-1132, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36056593

RESUMEN

The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.


Asunto(s)
Axones , Unión Neuromuscular , Animales , Humanos , Mamíferos , Unión Neuromuscular/patología
5.
J Anat ; 241(5): 1133-1147, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087283

RESUMEN

Morphological study of the neuromuscular junction (NMJ), a specialised peripheral synapse formed between a lower motor neuron and skeletal muscle fibre, has significantly contributed to the understanding of synaptic biology and neuromuscular disease pathogenesis. Rodent NMJs are readily accessible, and research into conditions such as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), and spinal muscular atrophy (SMA) has relied heavily on experimental work in these small mammals. However, given that nerve length dependency is an important feature of many peripheral neuropathies, these rodent models have clear shortcomings; large animal models might be preferable, but their size presents novel anatomical challenges. Overcoming these constraints to study the NMJ morphology of large mammalian distal limb muscles is of prime importance to increase cross-species translational neuromuscular research potential, particularly in the study of long motor units. In the past, NMJ phenotype analysis of large muscle bodies within the equine distal pelvic limb, such as the tibialis cranialis, or within muscles of high fibrous content, such as the soleus, has posed a distinct experimental hurdle. We optimised a technique for NMJ location and dissection from equine pelvic limb muscles. Using a quantification method validated in smaller species, we demonstrate their morphology and show that equine NMJs can be reliably dissected, stained and analysed. We reveal that the NMJs within the equine soleus have distinctly different morphologies when compared to the extensor digitorum longus and tibialis cranialis muscles. Overall, we demonstrate that equine distal pelvic limb muscles can be regionally dissected, with samples whole-mounted and their innervation patterns visualised. These methods will allow the localisation and analysis of neuromuscular junctions within the muscle bodies of large mammals to identify neuroanatomical and neuropathological features.


Asunto(s)
Colorantes , Enfermedades del Sistema Nervioso Periférico , Animales , Caballos , Mamíferos , Neuronas Motoras/patología , Fibras Musculares Esqueléticas , Músculo Esquelético/patología , Unión Neuromuscular/patología , Enfermedades del Sistema Nervioso Periférico/patología
6.
Am J Hum Genet ; 100(5): 706-724, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28413018

RESUMEN

During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.


Asunto(s)
Epilepsia/genética , Proteínas/genética , Espasmos Infantiles/genética , Transmisión Sináptica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Modelos Animales de Enfermedad , Epilepsia/diagnóstico , Fibroblastos/metabolismo , Técnicas de Genotipaje , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Ratones , Ratones Transgénicos , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Proteica , Proteínas/metabolismo , Células de Purkinje/metabolismo , Espasmos Infantiles/diagnóstico , Vesículas Sinápticas/metabolismo , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo
7.
J Anat ; 237(5): 827-836, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32573802

RESUMEN

The neuromuscular junction (NMJ)-a synapse formed between lower motor neuron and skeletal muscle fibre-represents a major focus of both basic neuroscience research and clinical neuroscience research. Although the NMJ is known to play an important role in many neurodegenerative conditions affecting humans, the vast majority of anatomical and physiological data concerning the NMJ come from lower mammalian (e.g. rodent) animal models. However, recent findings have demonstrated major differences between the cellular anatomy and molecular anatomy of human and rodent NMJs. Therefore, we undertook a comparative morphometric analysis of the NMJ across several larger mammalian species in order to generate baseline inter-species anatomical reference data for the NMJ and to identify animal models that better represent the morphology of the human NMJ in vivo. Using a standardized morphometric platform ('NMJ-morph'), we analysed 5,385 individual NMJs from lower/pelvic limb muscles (EDL, soleus and peronei) of 6 mammalian species (mouse, cat, dog, sheep, pig and human). There was marked heterogeneity of NMJ morphology both within and between species, with no overall relationship found between NMJ morphology and muscle fibre diameter or body size. Mice had the largest NMJs on the smallest muscle fibres; cats had the smallest NMJs on the largest muscle fibres. Of all the species examined, the sheep NMJ had the most closely matched morphology to that found in humans. Taken together, we present a series of comprehensive baseline morphometric data for the mammalian NMJ and suggest that ovine models are likely to best represent the human NMJ in health and disease.


Asunto(s)
Mamíferos/anatomía & histología , Unión Neuromuscular/anatomía & histología , Animales , Gatos , Perros , Humanos , Ratones
8.
J Fish Biol ; 94(1): 40-52, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30357836

RESUMEN

The diet of repeat-spawner Atlantic salmon Salmo salar was investigated using carbon and nitrogen stable-isotope values from the outer growth band of scales, which reflect the fish's consumption and growth during their most recent marine phase. Isotope values for S. salar displaying different spawning strategies were compared between and within the Miramichi and Nashwaak Rivers, New Brunswick, Canada and a Bayesian mixing model was used to infer dietary contributions from potential prey items. Significant differences in the stable-isotope values were found among spawning strategies and between rivers, indicating differences in diet and feeding area, consistent with hypotheses. Bayesian mixing model results inferred the main prey items consumed during marine feeding by S. salar to consist of hyperiid amphipods and capelin Mallotus villosus for repeat alternate spawners from both rivers, sandlance Ammodytes sp. for repeat consecutive spawners from the Miramichi River and amphipods for repeat consecutive spawners from the Nashwaak River. These results demonstrate the diversity of feeding tactics among S. salar spawning strategies from the same river and between populations from different rivers. Accounting for differences in prey availability and the subsequent impact on S. salar diet and spawner return rates (i.e., marine survival) will facilitate the application of ecosystem-based management practices, such as ensuring that fisheries for forage species do not indirectly adversely affect S. salar return rates.


Asunto(s)
Dieta , Salmo salar/fisiología , Conducta Sexual Animal , Animales , Teorema de Bayes , Isótopos de Carbono/análisis , Ecosistema , Nuevo Brunswick , Isótopos de Nitrógeno/análisis , Osmeriformes , Ríos
9.
Hum Mol Genet ; 25(13): 2853-2861, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27170316

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, primarily affecting lower motor neurons. Recent evidence from SMA and related conditions suggests that glial cells can influence disease severity. Here, we investigated the role of glial cells in the peripheral nervous system by creating SMA mice selectively overexpressing SMN in myelinating Schwann cells (Smn-/-;SMN2tg/0;SMN1SC). Restoration of SMN protein levels restricted solely to Schwann cells reversed myelination defects, significantly improved neuromuscular function and ameliorated neuromuscular junction pathology in SMA mice. However, restoration of SMN in Schwann cells had no impact on motor neuron soma loss from the spinal cord or ongoing systemic and peripheral pathology. This study provides evidence for a defined, intrinsic contribution of glial cells to SMA disease pathogenesis and suggests that therapies designed to include Schwann cells in their target tissues are likely to be required in order to rescue myelination defects and associated disease symptoms.


Asunto(s)
Neuroglía/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Vaina de Mielina/metabolismo , Degeneración Nerviosa/patología , Enfermedades Neuromusculares/patología , Unión Neuromuscular/metabolismo , Células de Schwann/metabolismo , Médula Espinal/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
10.
Hum Mol Genet ; 25(20): 4389-4404, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28173151

RESUMEN

Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked MECP2 gene. MeCP2 protein is highly expressed in the nervous system and deficiency in the mouse central nervous system alone recapitulates many features of the disorder. This suggests that RTT is primarily a neurological disorder, although the protein is reportedly widely expressed throughout the body. To determine whether aspects of the RTT phenotype that originate in non-neuronal tissues might have been overlooked, we generated mice in which Mecp2 remains at near normal levels in the nervous system, but is severely depleted elsewhere. Comparison of these mice with wild type and globally MeCP2-deficient mice showed that the majority of RTT-associated behavioural, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes are absent. Specific peripheral phenotypes were observed, however, most notably hypo-activity, exercise fatigue and bone abnormalities. Our results confirm that the brain should be the primary target for potential RTT therapies, but also strongly suggest that some less extreme but clinically significant aspects of the disorder arise independently of defects in the nervous system.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Fenotipo , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Especificidad de Órganos , Síndrome de Rett/genética
11.
Mol Ther Nucleic Acids ; 33: 617-628, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37637210

RESUMEN

Neuromuscular junction (NMJ) dysfunction underlies several diseases, including congenital myasthenic syndromes (CMSs) and motor neuron disease (MND). Molecular pathways governing NMJ stability are therefore of interest from both biological and therapeutic perspectives. Muscle-specific kinase (MuSK) is necessary for the formation and maintenance of post-synaptic elements of the NMJ, and downstream of tyrosine kinases 7 (DOK7) is crucial for activation of the MuSK pathway. Overexpression of DOK7 using AAV9 has been shown to ameliorate neuromuscular pathology in pre-clinical disease models of CMS and MND. However, long-term consequences of DOK7 expression have been sparsely investigated and targeted overexpression of DOK7 in skeletal muscle yet to be established. Here, we developed and characterized a novel AAV9-DOK7 facilitating forced expression of DOK7 under a skeletal muscle-specific promoter. AAV9-tMCK-DOK7 was systemically delivered to newborn mice that were monitored over 6 months. DOK7 overexpression was restricted to skeletal muscles. Body weight, blood biochemistry, and histopathological assessments were unaffected by AAV9-tMCK-DOK7 treatment. In contrast, forced expression of DOK7 resulted in enlargement of both the pre- and post-synaptic components of the NMJ, without causing denervation. We conclude that muscle-specific DOK7 overexpression can be achieved in a safe manner, with the capacity to target NMJs in vivo.

12.
Brain Commun ; 3(2): fcab081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977269

RESUMEN

Terminal Schwann cells are non-myelinating glial cells localized to the neuromuscular junction. They play an important role in regulating many aspects of neuromuscular junction form and function, in health and during disease. However, almost all previous studies of mammalian terminal Schwann cells have used rodent models. Despite a growing awareness of differences in the cellular and molecular anatomy of rodent and human neuromuscular junctions, it remains unclear as to whether these differences also extend to the terminal Schwann cells. Here, we have adapted immunohistochemical protocols to facilitate visualization and comparative morphometric analyses of terminal Schwann cells at the human and mouse neuromuscular junction. We labelled terminal Schwann cells in the peroneus brevis muscle in six adult mice and five humans with antibodies against S100 protein. All human neuromuscular junctions were associated with at least one terminal Schwann cell, consistent with findings from other species, with an average of ∼1.7 terminal Schwann cells per neuromuscular junction in both humans and mice. In contrast, human terminal Schwann cells were significantly smaller than those of mice (P ≤ 0.01), in keeping with differences in overall synaptic size. Human terminal Schwann cell cytoplasm extended significantly beyond the synaptic boundaries of the neuromuscular junction, whereas terminal Schwann cells in mice were largely restricted to the synapse. Moreover, there was a significant difference in the location of terminal Schwann cell nuclei (P ≤ 0.01), with human terminal Schwann cells having their nuclear compartment located beyond the perimeter of the synapse more than the mouse. Taken together, these findings demonstrate that terminal Schwann cells at the human neuromuscular junction have notable differences in their morphology and synaptic relationships compared to mice. These fundamental differences need to be considered when translating the findings of both neuromuscular junction biology and pathology from rodents to humans.

13.
Int J Surg ; 96: 106172, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763111

RESUMEN

BACKGROUND: It is well recognized that a sound foundation in surgical anatomy is a cornerstone of safe surgical practice, yet many trainees struggle with the upskilling in anatomy that is required to support their day-to-day practice. In the context of the UK-wide Improving Surgical Training pilot, we set out to establish a surgical anatomy programme for core surgical trainees in the Scotland Deanery. The aim was to enable all trainees to review the surgical anatomy of the whole body to MRCS level at least once during core surgical training. MATERIALS AND METHODS: Teaching was delivered in Edinburgh, with trainees commuting from all parts of the Scotland Deanery. Individual teaching days focused on the surgical anatomy of the head and neck, trunk and limbs, using a combination of lectures (principles and cases) and interactive demonstrations on prosected specimens. Faculty comprised a balance of surgical demonstrators and senior academic staff, including MRCS examiners. RESULTS: In total, 16 individual teaching sessions were attended by over 300 trainees across the first 2 years of the programme. Evaluation form response rate was nearly 80%. The programme was highly rated by trainees in relation to the method of delivery, level of teaching and surgical focus. CONCLUSION: Surgical anatomy remains an integral part of surgical training. Our experience in developing a deanery-wide surgical anatomy programme highlights the crucial links between medical school, training deanery and surgical college. This collaborative approach can be extended to higher surgical training and continuing professional development, and the methods can be adapted to meet the needs of trainees in different parts of the globe.


Asunto(s)
Competencia Clínica , Educación de Postgrado en Medicina , Humanos , Escocia
14.
Biomolecules ; 11(10)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680132

RESUMEN

Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066-1315 (emGFP-1066:TetC), 1093-1315 (emGFP-1093:TetC) and 1109-1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.


Asunto(s)
Microscopía Confocal , Unión Neuromuscular/diagnóstico por imagen , Toxina Tetánica/toxicidad , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/metabolismo , Sitios de Unión , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Tejido Nervioso/efectos de los fármacos , Tejido Nervioso/metabolismo , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos
15.
J Clin Invest ; 130(3): 1461-1465, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794435

RESUMEN

Cancer cachexia is a major cause of patient morbidity and mortality, with no efficacious treatment or management strategy. Despite cachexia sharing pathophysiological features with a number of neuromuscular wasting conditions, including age-related sarcopenia, the mechanisms underlying cachexia remain poorly understood. Studies of related conditions suggest that pathological targeting of the neuromuscular junction (NMJ) may play a key role in cachexia, but this has yet to be investigated in human patients. Here, high-resolution morphological analyses were undertaken on NMJs of rectus abdominis obtained from patients undergoing upper GI cancer surgery compared with controls (N = 30; n = 1,165 NMJs). Cancer patients included those with cachexia and weight-stable disease. Despite the low skeletal muscle index and significant muscle fiber atrophy (P < 0.0001) in patients with cachexia, NMJ morphology was fully conserved. No significant differences were observed in any of the pre- and postsynaptic variables measured. We conclude that NMJs remain structurally intact in rectus abdominis in both cancer and cachexia, suggesting that denervation of skeletal muscle is not a major driver of pathogenesis. The absence of NMJ pathology is in stark contrast to what is found in related conditions, such as age-related sarcopenia, and supports the hypothesis that intrinsic changes within skeletal muscle, independent of any changes in motor neurons, represent the primary locus of neuromuscular pathology in cancer cachexia.


Asunto(s)
Caquexia , Neoplasias Gastrointestinales , Unión Neuromuscular , Recto del Abdomen , Caquexia/metabolismo , Caquexia/patología , Femenino , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Humanos , Masculino , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Recto del Abdomen/metabolismo , Recto del Abdomen/patología
16.
R Soc Open Sci ; 7(4): 200128, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431902

RESUMEN

Large-scale data analysis of synaptic morphology is becoming increasingly important to the field of neurobiological research (e.g. 'connectomics'). In particular, a detailed knowledge of neuromuscular junction (NMJ) morphology has proven to be important for understanding the form and function of synapses in both health and disease. The recent introduction of a standardized approach to the morphometric analysis of the NMJ-'NMJ-morph'-has provided the first common software platform with which to analyse and integrate NMJ data from different research laboratories. Here, we describe the design and development of a novel macro-'automated NMJ-morph' or 'aNMJ-morph'-to update and streamline the original NMJ-morph methodology. ImageJ macro language was used to encode the complete NMJ-morph workflow into seven navigation windows that generate robust data for 19 individual pre-/post-synaptic variables. The aNMJ-morph scripting was first validated against reference data generated by the parent workflow to confirm data reproducibility. aNMJ-morph was then compared with the parent workflow in large-scale data analysis of original NMJ images (240 NMJs) by multiple independent investigators. aNMJ-morph conferred a fourfold increase in data acquisition rate compared with the parent workflow, with average analysis times reduced to approximately 1 min per NMJ. Strong concordance was demonstrated between the two approaches for all 19 morphological variables, confirming the robust nature of aNMJ-morph. aNMJ-morph is a freely available and easy-to-use macro for the rapid and robust analysis of NMJ morphology and offers significant improvements in data acquisition and learning curve compared to the original NMJ-morph workflow.

17.
Cell Rep ; 21(9): 2348-2356, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29186674

RESUMEN

The neuromuscular junction (NMJ) plays a fundamental role in transferring information from lower motor neuron to skeletal muscle to generate movement. It is also an experimentally accessible model synapse routinely studied in animal models to explore fundamental aspects of synaptic form and function. Here, we combined morphological techniques, super-resolution imaging, and proteomic profiling to reveal the detailed cellular and molecular architecture of the human NMJ. Human NMJs were significantly smaller, less complex, and more fragmented than mouse NMJs. In contrast to mice, human NMJs were also remarkably stable across the entire adult lifespan, showing no signs of age-related degeneration or remodeling. Super-resolution imaging and proteomic profiling revealed distinctive distribution of active zone proteins and differential expression of core synaptic proteins and molecular pathways at the human NMJ. Taken together, these findings reveal human-specific cellular and molecular features of the NMJ that distinguish them from comparable synapses in other mammalian species.


Asunto(s)
Unión Neuromuscular/anatomía & histología , Unión Neuromuscular/citología , Envejecimiento/fisiología , Animales , Humanos , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Sistema Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Proteómica , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
18.
Dis Model Mech ; 10(7): 859-868, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28550099

RESUMEN

Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches.


Asunto(s)
Conducta Animal , Encéfalo/patología , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Animales , Biomarcadores/metabolismo , Encéfalo/fisiopatología , Región CA1 Hipocampal/patología , Muerte Celular , Núcleo Celular/metabolismo , Cognición , Marcha , Células HEK293 , Humanos , Ratones , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Neuronas/metabolismo , Neuronas/patología , ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Regulación hacia Arriba
19.
Open Biol ; 6(12)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27927794

RESUMEN

The ability to form synapses is one of the fundamental properties required by the mammalian nervous system to generate network connectivity. Structural and functional diversity among synaptic populations is a key hallmark of network diversity, and yet we know comparatively little about the morphological principles that govern variability in the size, shape and strength of synapses. Using the mouse neuromuscular junction (NMJ) as an experimentally accessible model synapse, we report on the development of a robust, standardized methodology to facilitate comparative morphometric analysis of synapses ('NMJ-morph'). We used NMJ-morph to generate baseline morphological reference data for 21 separate pre- and post-synaptic variables from 2160 individual NMJs belonging to nine anatomically distinct populations of synapses, revealing systematic differences in NMJ morphology between defined synaptic populations. Principal components analysis revealed that overall NMJ size and the degree of synaptic fragmentation, alongside pre-synaptic axon diameter, were the most critical parameters in defining synaptic morphology. 'Average' synaptic morphology was remarkably conserved between comparable synapses from the left and right sides of the body. Systematic differences in synaptic morphology predicted corresponding differences in synaptic function that were supported by physiological recordings, confirming the robust relationship between synaptic size and strength.


Asunto(s)
Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Femenino , Masculino , Ratones , Análisis de Componente Principal
20.
JCI Insight ; 1(11): e87908, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27699224

RESUMEN

The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell-derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9-UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.


Asunto(s)
Terapia Genética , Atrofia Muscular Espinal/terapia , Enzimas Activadoras de Ubiquitina/genética , Animales , Técnicas de Silenciamiento del Gen , Homeostasis , Humanos , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA