Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Anim Cogn ; 26(3): 813-821, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36434132

RESUMEN

Much research has focused on the development and evolution of cognition in the realm of numerical knowledge in human and nonhuman animals but often fails to take into account ecological realities that, over time, may influence and constrain cognitive abilities in real-life decision-making. Cognitive abilities such as enumerating and timing are central to many psychological and ecological models of behavior, yet our knowledge of how these are affected by environmental fluctuations remains incomplete. Our research bridges the gap between basic cognitive research and ecological decision-making. We used coyotes (Canis latrans) as a model animal system to study decision-making about smaller, more proximal food rewards and larger, more distant food rewards; we tested animals across their four reproductive cycle phases to examine effects of ecological factors such as breeding status and environmental risk on quantitative performance. Results show that coyotes, similar to other species, spatially discount food rewards while foraging. The degree to which coyotes were sensitive to the risk of obtaining the larger food reward, however, depended on the season in which they completed the foraging task, the presence of unfamiliar humans (i.e., risk), and the presence of conspecifics. Importantly, our results support that seasonal variations drive many differences in nonhuman animal behavior and cognition (e.g., hibernation, breeding, food resource availability). Further, it may be useful in the future to extend this work to humans because seasons may influence human cognition as well, and this remains unexplored in the realms of enumeration, timing, and spatial thinking.


Asunto(s)
Coyotes , Animales , Humanos , Coyotes/psicología , Reproducción , Conducta Animal , Alimentos , Recompensa
2.
Brain Cogn ; 144: 105601, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32739744

RESUMEN

Number line estimation (NLE) is an educational task in which children estimate the location of a value (e.g., 25) on a blank line that represents a numerical range (e.g., 0-100). NLE performance is a strong predictor of success in mathematics, and error patterns on this task help provide a glimpse into how children may represent number internally. However, a missing and fundamental element of this puzzle is the identification of neural correlates of NLE in children. That is, understanding possible neural signatures related to NLE performance will provide valuable insight into the cognitive processes that underlie children's development of NLE ability. Using functional near-infrared spectroscopy (fNIRS), we provide the first investigation of concurrent behavioral and cortical signatures of NLE performance in children. Specifically, our results highlight significant fronto-parietal changes in cortical activation in response to increases in NLE scale (e.g., 0-100 vs. 0-100,000). Furthermore, our results demonstrate that NLE performance feedback (auditory, visual, or audiovisual), as well as children's grade (2nd vs. 3rd) influence cortical responding during an NLE task.

3.
Proc Natl Acad Sci U S A ; 111(20): E2140-8, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24753565

RESUMEN

Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.


Asunto(s)
Encéfalo/fisiología , Cognición , Primates/fisiología , Animales , Evolución Biológica , Encéfalo/anatomía & histología , Dieta , Humanos , Aprendizaje , Funciones de Verosimilitud , Modelos Estadísticos , Tamaño de los Órganos , Filogenia , Primates/anatomía & histología , Solución de Problemas , Selección Genética , Conducta Social , Especificidad de la Especie
4.
Psychol Rec ; 67(2): 137-148, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29606776

RESUMEN

The detrimental health effects of exposure to air pollution are well established. Fostering behavioral change concerning air quality may be challenging because the detrimental health effects of exposure to air pollution are delayed. Delay discounting, a measure of impulsive choice, encapsulates this process of choosing between the immediate conveniences of behaviors that increase pollution and the delayed consequences of prolonged exposure to poor air quality. In Experiment 1, participants completed a series of delay-discounting tasks for air quality and money. We found that participants discounted delayed air quality more than money. In Experiment 2, we investigated whether the common finding that large amounts of money are discounted less steeply than small amounts of money generalized to larger and smaller improvements in air quality. Participants discounted larger improvements in air quality less steeply than smaller improvements, indicating that the discounting of air quality shares a similar process as the discounting of money. Our results indicate that the discounting of delayed money is strongly related to the discounting of delayed air quality and that similar mechanisms may be involved in the discounting of these qualitatively different outcomes. These data are also the first to demonstrate the malleability of delay discounting of air quality, and provide important public health implications for decreasing delay discounting of air quality.

5.
J Exp Child Psychol ; 122: 21-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24518049

RESUMEN

Infants possess basic capabilities to assess various quantitative properties such as number, size, and time. Preverbal discriminations are approximate, however, and are similarly limited across these dimensions. Here, we present the first evidence that multiple sources of quantitative unisensory information about dynamic stimuli-namely, simultaneous visual cues to changes in both number and surface area-may accelerate 6-month-olds' quantitative competence. Using a habituation-dishabituation paradigm, results from Experiment 1 demonstrate that, when provided with such visual cues to multiple quantitative properties that occur in the same direction, infants make more precise discriminations than has been shown when they receive information about either cue alone. Moreover, Experiment 2 demonstrates that infants' discrimination also benefits from simultaneous visual cues to quantitative changes that occur in opposite directions. Finally, Experiment 3 demonstrates that these findings are not driven by infants' ability to discriminate a 2:3 ratio change in surface area of a dynamic stimulus alone. Thus, we hypothesize that enhanced quantitative discrimination occurs because simultaneous visual quantitative changes may be more salient than single-source information, which could better recruit attention and result in more precise learning and remembering.


Asunto(s)
Señales (Psicología) , Discriminación en Psicología , Psicología Infantil , Habituación Psicofisiológica , Humanos , Lactante , Masculino , Estimulación Luminosa , Percepción del Tamaño
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1844): 20200529, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34957840

RESUMEN

The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.


Asunto(s)
Evolución Biológica , Cognición , Animales , Teorema de Bayes , Cognición/fisiología , Humanos , Mamíferos , Filogenia , Psicofísica , Especificidad de la Especie
7.
Dev Sci ; 14(2): 205-13, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213895

RESUMEN

This study presents the first evidence that preschool children perform more accurately in a numerical matching task when given multisensory rather than unisensory information about number. Three- to 5-year-old children learned to play a numerical matching game on a touchscreen computer, which asked them to match a sample numerosity with a numerically equivalent choice numerosity. Samples consisted of a series of visual squares on some trials, a series of auditory tones on other trials, and synchronized squares and tones on still other trials. Children performed at chance on this matching task when provided with either type of unisensory sample, but improved significantly when provided with multisensory samples. There was no speed­accuracy tradeoff between unisensory and multisensory trial types. Thus, these findings suggest that intersensory redundancy may improve young children's abilities to match numerosities.


Asunto(s)
Cognición , Aprendizaje , Conceptos Matemáticos , Percepción Auditiva , Preescolar , Femenino , Humanos , Masculino , Percepción Visual
8.
Front Psychol ; 11: 1682, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765374

RESUMEN

Research within psychology and other disciplines has shown that exposure to natural environments holds extensive physiological and psychological benefits. Adding to the health and cognitive benefits of natural environments, evidence suggests that exposure to nature also promotes healthy human decision-making. Unhealthy decision-making (e.g., smoking, non-medical prescription opioid misuse) and disorders associated with lack of impulse control [e.g., tobacco use, opioid use disorder (OUD)], contribute to millions of preventable deaths annually (i.e., 6 million people die each year of tobacco-related illness worldwide, deaths from opioids from 2002 to 2017 have more than quadrupled in the United States alone). Impulsive and unhealthy decision-making also contributes to many pressing environmental issues such as climate change. We recently demonstrated a causal link between visual exposure to nature (e.g., forests) and improved self-control (i.e., decreased impulsivity) in a laboratory setting, as well as the extent to which nearby nature and green space exposure improves self-control and health decisions in daily life outside of the experimental laboratory. Determining the benefits of nearby nature for self-controlled decision-making holds theoretical and applied implications for the design of our surrounding environments. In this article, we synergize the overarching results of recent research endeavors in three domains including the effects of nature exposure on (1) general health-related decision-making, (2) health and decision-making relevant for application to addiction related processes (e.g., OUD), and (3) environmentally relevant decision-making. We also discuss key future directions and conclusions.

9.
Front Psychol ; 11: 990, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587543

RESUMEN

Environments are unique in terms of structural composition and evoked human experience. Previous studies suggest that natural compared to built environments may increase positive emotions. Humans in natural environments also demonstrate greater performance on attention-based tasks. Few studies have investigated cortical mechanisms underlying these phenomena or probed these differences from a neural perspective. Using a temporally sensitive electrophysiological approach, we employ an event-related, implicit passive viewing task to demonstrate that in humans, a greater late positive potential (LPP) occurs with exposure to built than natural environments, resulting in a faster return of activation to pre-stimulus baseline levels when viewing natural environments. Our research thus provides new evidence suggesting natural environments are perceived differently from built environments, converging with previous behavioral findings and theoretical assumptions from environmental psychology.

10.
Curr Biol ; 15(11): 1034-8, 2005 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15936274

RESUMEN

Convergent evidence demonstrates that adult humans possess numerical representations that are independent of language [1, 2, 3, 4, 5 and 6]. Human infants and nonhuman animals can also make purely numerical discriminations, implicating both developmental and evolutionary bases for adult humans' language-independent representations of number [7 and 8]. Recent evidence suggests that the nonverbal representations of number held by human adults are not constrained by the sensory modality in which they were perceived [9]. Previous studies, however, have yielded conflicting results concerning whether the number representations held by nonhuman animals and human infants are tied to the modality in which they were established [10, 11, 12, 13, 14 and 15]. Here, we report that untrained monkeys preferentially looked at a dynamic video display depicting the number of conspecifics that matched the number of vocalizations they heard. These findings suggest that number representations held by monkeys, like those held by adult humans, are unfettered by stimulus modality.


Asunto(s)
Formación de Concepto , Discriminación en Psicología , Macaca mulatta/fisiología , Percepción del Habla/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Animales , Masculino , Matemática , Estimulación Luminosa , Espectrografía del Sonido , Grabación en Video
11.
Cognition ; 108(1): 210-21, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18226807

RESUMEN

Intersensory redundancy can facilitate animal and human behavior in areas as diverse as rhythm discrimination, signal detection, orienting responses, maternal call learning, and associative learning. In the realm of numerical development, infants show similar sensitivity to numerical differences in both the visual and auditory modalities. Using a habituation-dishabituation paradigm, we ask here, whether providing redundant, multisensory numerical information allows six-month-old infants to make more precise numerical discriminations. Results indicate that perceptually redundant information improved preverbal numerical precision to a level of discrimination previously thought attainable only after additional months of development. Multimodal stimuli may thus boost abstract cognitive abilities such as numerical competence.


Asunto(s)
Cognición , Lenguaje , Matemática , Tiempo de Reacción , Femenino , Humanos , Lactante , Masculino , Aprendizaje Verbal
12.
Cognition ; 108(3): 617-25, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18571636

RESUMEN

We report here that monkeys can actively match the number of sounds they hear to the number of shapes they see and present the first evidence that monkeys sum over sounds and sights. In Experiment 1, two monkeys were trained to choose a simultaneous array of 1-9 squares that numerically matched a sample sequence of shapes or sounds. Monkeys numerically matched across (audio-visual) and within (visual-visual) modalities with equal accuracy and transferred to novel numerical values. In Experiment 2, monkeys presented with sample sequences of randomly ordered shapes or tones were able to choose an array of 2-9 squares that was the numerical sum of the shapes and sounds in the sample sequence. In both experiments, accuracy and reaction time depended on the ratio between the correct numerical match and incorrect choice. These findings suggest monkeys and humans share an abstract numerical code that can be divorced from the modality in which stimuli are first experienced.


Asunto(s)
Atención , Percepción Auditiva , Aprendizaje Discriminativo , Macaca mulatta/psicología , Matemática , Reconocimiento Visual de Modelos , Solución de Problemas , Animales , Percepción de Color , Femenino , Orientación , Desempeño Psicomotor , Tiempo de Reacción , Disposición en Psicología
13.
Front Psychol ; 9: 1783, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333769

RESUMEN

Prominent theories suggest that time and number are processed by a single neural locus or a common magnitude system (e.g., Meck and Church, 1983; Walsh, 2003). However, a growing body of literature has identified numerous inconsistencies between temporal and numerical processing, casting doubt on the presence of such a singular system. Findings of distinct temporal and numerical biases in the presence of emotional content (Baker et al., 2013; Young and Cordes, 2013) are particularly relevant to this debate. Specifically, emotional stimuli lead to temporal overestimation, yet identical stimuli result in numerical underestimation. In the current study, we tested adults' temporal and numerical processing under cognitive load, a task that compromises attention. Under the premise of a common magnitude system, one would predict cognitive load to have an identical impact on temporal and numerical judgments. Inconsistent with the common magnitude account, results revealed baseline performance on the temporal and numerical task was not correlated and importantly, cognitive load resulted in distinct and opposing quantity biases: numerical underestimation and marginal temporal overestimation. Together, our data call into question the common magnitude account, while also providing support for the role of attentional processes involved in numerical underestimation.

14.
PLoS One ; 10(11): e0141030, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26558610

RESUMEN

Impulsivity in delay discounting is associated with maladaptive behaviors such as overeating and drug and alcohol abuse. Researchers have recently noted that delay discounting, even when measured by a brief laboratory task, may be the best predictor of human health related behaviors (e.g., exercise) currently available. Identifying techniques to decrease impulsivity in delay discounting, therefore, could help improve decision-making on a global scale. Visual exposure to natural environments is one recent approach shown to decrease impulsive decision-making in a delay discounting task, although the mechanism driving this result is currently unknown. The present experiment was thus designed to evaluate not only whether visual exposure to natural (mountains, lakes) relative to built (buildings, cities) environments resulted in less impulsivity, but also whether this exposure influenced time perception. Participants were randomly assigned to either a natural environment condition or a built environment condition. Participants viewed photographs of either natural scenes or built scenes before and during a delay discounting task in which they made choices about receiving immediate or delayed hypothetical monetary outcomes. Participants also completed an interval bisection task in which natural or built stimuli were judged as relatively longer or shorter presentation durations. Following the delay discounting and interval bisection tasks, additional measures of time perception were administered, including how many minutes participants thought had passed during the session and a scale measurement of whether time "flew" or "dragged" during the session. Participants exposed to natural as opposed to built scenes were less impulsive and also reported longer subjective session times, although no differences across groups were revealed with the interval bisection task. These results are the first to suggest that decreased impulsivity from exposure to natural as opposed to built environments may be related to lengthened time perception.


Asunto(s)
Ambiente , Conducta Impulsiva , Naturaleza , Estimulación Luminosa , Percepción del Tiempo , Toma de Decisiones , Descuento por Demora , Humanos
15.
PLoS One ; 9(5): e97915, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24841421

RESUMEN

The benefits of visual exposure to natural environments for human well-being in areas of stress reduction, mood improvement, and attention restoration are well documented, but the effects of natural environments on impulsive decision-making remain unknown. Impulsive decision-making in delay discounting offers generality, predictive validity, and insight into decision-making related to unhealthy behaviors. The present experiment evaluated differences in such decision-making in humans experiencing visual exposure to one of the following conditions: natural (e.g., mountains), built (e.g., buildings), or control (e.g., triangles) using a delay discounting task that required participants to choose between immediate and delayed hypothetical monetary outcomes. Participants viewed the images before and during the delay discounting task. Participants were less impulsive in the condition providing visual exposure to natural scenes compared to built and geometric scenes. Results suggest that exposure to natural environments results in decreased impulsive decision-making relative to built environments.


Asunto(s)
Toma de Decisiones/fisiología , Ambiente , Conducta Impulsiva/fisiología , Percepción Visual/fisiología , Análisis de Varianza , Humanos , Estimulación Luminosa , Estadísticas no Paramétricas , Factores de Tiempo , Adulto Joven
16.
Front Psychol ; 3: 387, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060847

RESUMEN

One way to investigate the evolution of cognition is to compare the abilities of phylogenetically related species. The domestic dog (Canis lupus familiaris), for example, still shares cognitive abilities with the coyote (Canis latrans). Both of these canids possess the ability to make psychophysical "less/more" discriminations of food based on quantity. Like many other species including humans, this ability is mediated by Weber's Law: discrimination of continuous quantities is dependent on the ratio between the two quantities. As two simultaneously presented quantities of food become more similar, choice of the large or small option becomes random in both dogs and coyotes. It remains unknown, however, whether these closely related species within the same family - one domesticated, and one wild - make such quantitative comparisons with comparable accuracy. Has domestication honed or diminished this quantitative ability? Might different selective and ecological pressures facing coyotes drive them to be more or less able to accurately represent and discriminate food quantity than domesticated dogs? This study is an effort to elucidate this question concerning the evolution of non-verbal quantitative cognition. Here, we tested the quantitative discrimination ability of 16 domesticated dogs. Each animal was given nine trials in which two different quantities of food were simultaneously displayed to them. The domesticated dogs' performance on this task was then compared directly to the data from 16 coyotes' performance on this same task reported by Baker et al. (2011). The quantitative discrimination abilities between the two species were strikingly similar. Domesticated dogs demonstrated similar quantitative sensitivity as coyotes, suggesting that domestication may not have significantly altered the psychophysical discrimination abilities of canids. Instead, this study provides further evidence for similar non-verbal quantitative abilities across multiple species.

17.
Behav Processes ; 88(2): 72-5, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21856389

RESUMEN

Previous studies have demonstrated that Weber's Law mediates quantitative discrimination abilities across various species. Here, we tested coyotes' (Canis latrans) ability to discriminate between various quantities of food and investigated whether this ability conforms to predictions of Weber's Law. We demonstrate herein that coyotes are capable of reliably discriminating large versus small quantities of discrete food items. As predicted by Weber's Law, coyotes' quantitative discrimination abilities are mediated by the ratio between the large and small quantities of food and exhibit scalar variability. Furthermore, in this task coyotes were not discriminating large versus small quantities based on olfactory cues alone.


Asunto(s)
Coyotes/fisiología , Conducta Alimentaria/fisiología , Animales , Señales (Psicología) , Dieta , Discriminación en Psicología/fisiología , Alimentos , Juicio , Modelos Logísticos , Odorantes , Estimulación Luminosa , Olfato/fisiología
18.
J Exp Child Psychol ; 95(3): 215-29, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16808924

RESUMEN

This study compared nonverbal numerical processing in 6-year-olds with that in nonhuman animals using a numerical bisection task. In the study, 16 children were trained on a delayed match-to-sample paradigm to match exemplars of two anchor numerosities. Children were then required to indicate whether a sample intermediate to the anchor values was closer to the small anchor value or the large anchor value. For two sets of anchor values with the same ratio, the probability of choosing the larger anchor value increased systematically with sample number, and the psychometric functions superimposed when plotted on a logarithmic scale. The psychometric functions produced by the children also superimposed with the psychometric functions produced by rhesus monkeys in an analogous previous experiment. These examples of superimposition demonstrate that nonverbal number representations, even in children who have acquired the verbal counting system, are modulated by Weber's law.


Asunto(s)
Cognición , Juicio , Matemática , Comunicación no Verbal , Animales , Niño , Preescolar , Umbral Diferencial , Femenino , Humanos , Macaca mulatta , Masculino
19.
Anim Cogn ; 9(3): 159-72, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16575587

RESUMEN

We present the results of two experiments that probe the ability of rhesus macaques to match visual arrays based on number. Three monkeys were first trained on a delayed match-to-sample paradigm (DMTS) to match stimuli on the basis of number and ignore continuous dimensions such as element size, cumulative surface area, and density. Monkeys were then tested in a numerical bisection experiment that required them to indicate whether a sample numerosity was closer to a small or large anchor value. Results indicated that, for two sets of anchor values with the same ratio, the probability of choosing the larger anchor value systematically increased with the sample number and the psychometric functions superimposed. A second experiment employed a numerical DMTS task in which the choice values contained an exact numerical match to the sample and a distracter that varied in number. Both accuracy and reaction time were modulated by the ratio between the correct numerical match and the distracter, as predicted by Weber's Law.


Asunto(s)
Atención , Discriminación en Psicología , Macaca mulatta/psicología , Reconocimiento Visual de Modelos , Solución de Problemas , Animales , Femenino , Matemática , Enmascaramiento Perceptual , Teoría Psicológica , Psicometría
20.
Proc Natl Acad Sci U S A ; 103(9): 3486-9, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16492785

RESUMEN

Human infants can discriminate visual and auditory stimuli solely on the basis of number, suggesting a developmental foundation for the nonverbal number representations of adult humans. Recent studies suggest that these language-independent number representations are multisensory in both adult humans and nonhuman animals. Surprisingly, however, previous studies have yielded mixed evidence concerning whether nonverbal numerical representations independent of sensory modality are present early in human development. In this article, we use a paradigm that avoids stimulus confounds present in previous studies of cross-modal numerical mapping in infants. We show that 7-month-old infants preferentially attend to visual displays of adult humans that numerically match the number of adult humans they hear speaking. These data provide evidence that by 7 months of age, infants connect numerical representations across different sensory modalities when presented with human faces and voices. Results support the possibility of a shared system between preverbal infants and nonverbal animals for representing number.


Asunto(s)
Discriminación en Psicología/fisiología , Estimulación Acústica , Femenino , Humanos , Lactante , Masculino , Modelos Neurológicos , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA