Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 18(9): 5530-5537, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30080050

RESUMEN

Solution processing of polycrystalline compound semiconductor thin film using nanocrystals as a precursor is considered one of the most promising and economically viable routes for future large-area manufacturing. However, in polycrystalline compound semiconductor films such as Cu2ZnSnS4 (CZTS), grain size, and the respective grain boundaries play a key role in dictating the optoelectronic properties. Various strategies have been employed previously in tailoring the grain size and boundaries (such as ligand exchange) but most require postdeposition thermal annealing at high temperature in the presence of grain growth directing agents (selenium or sulfur vapor with/without Na, K, etc.) to enlarge the grains through sintering. Here, we show a different strategy of controlling grain size by tuning the kinetics of nucleation and the subsequent grain growth in CZTS nanocrystal thin films during a crystalline phase transition. We demonstrate that the activation energy for the phase transition can be varied by utilizing different shapes (spherical and nanorod) of nanocrystals with similar size, composition, and surface chemistry leading to different densities of nucleation sites and, thereby, different grain sizes in the films. Additionally, exchanging the native organic ligands for inorganic surface ligands changes the activation energy for the phase change and substantially changes the grain growth dynamics, while also compositionally modifying the resulting film. This combined approach of using nucleation and growth dynamics and surface chemistry enables us to tune the grain size of polycrystalline CZTS films and customize their electronic properties by compositional engineering.

2.
ACS Appl Electron Mater ; 5(5): 2624-2637, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37250468

RESUMEN

In recent times the chiral semimetal cobalt monosilicide (CoSi) has emerged as a prototypical, nearly ideal topological conductor hosting giant, topologically protected Fermi arcs. Exotic topological quantum properties have already been identified in CoSi bulk single crystals. However, CoSi is also known for being prone to intrinsic disorder and inhomogeneities, which, despite topological protection, risk jeopardizing its topological transport features. Alternatively, topology may be stabilized by disorder, suggesting the tantalizing possibility of an amorphous variant of a topological metal, yet to be discovered. In this respect, understanding how microstructure and stoichiometry affect magnetotransport properties is of pivotal importance, particularly in case of low-dimensional CoSi thin films and devices. Here we comprehensively investigate the magnetotransport and magnetic properties of ≈25 nm Co1-xSix thin films grown on a MgO substrate with controlled film microstructure (amorphous vs textured) and chemical composition (0.40 < x < 0.60). The resistivity of Co1-xSix thin films is nearly insensitive to the film microstructure and displays a progressive evolution from metallic-like (dρxx/dT > 0) to semiconducting-like (dρxx/dT < 0) regimes of conduction upon increasing the silicon content. A variety of anomalies in the magnetotransport properties, comprising for instance signatures consistent with quantum localization and electron-electron interactions, anomalous Hall and Kondo effects, and the occurrence of magnetic exchange interactions, are attributable to the prominent influence of intrinsic structural and chemical disorder. Our systematic survey brings to attention the complexity and the challenges involved in the prospective exploitation of the topological chiral semimetal CoSi in nanoscale thin films and devices.

3.
Nat Nanotechnol ; 8(10): 748-54, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24077030

RESUMEN

Epitaxial growth of SrTiO3 on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO3. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO3 films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180°. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO3 films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.

5.
Nat Mater ; 6(5): 352-6, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17417642

RESUMEN

Chalcogenide films with reversible amorphous-crystalline phase transitions have been commercialized as optically rewritable data-storage media, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM). Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography. Metal chalcogenide films for transistor applications have recently been deposited by a low-temperature, solution-phase route. Here, we extend this methodology to prepare thin films and nanostructures of GeSbSe phase-change materials. We report the ready tuneability of phase-change properties in GeSbSe films through composition variation achieved by combining novel precursors in solution. Rapid, submicrosecond phase switching is observed by laser-pulse annealing. We also demonstrate that prepatterned holes can be filled to fabricate phase-change nanostructures from hundreds down to tens of nanometres in size, offering enhanced flexibility in fabricating PCRAM devices with reduced current requirements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA