Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(1): 152-160, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31848249

RESUMEN

Surface-guided growth of planar nanowires offers the possibility to control their position, direction, length, and crystallographic orientation and to enable their large-scale integration into practical devices. However, understanding of and control over planar nanowire growth are still limited. Here, we study theoretically and experimentally the growth kinetics of surface-guided planar nanowires. We present a model that considers different kinetic pathways of material transport into the planar nanowires. Two limiting regimes are established by the Gibbs-Thomson effect for thinner nanowires and by surface diffusion for thicker nanowires. By fitting the experimental data for the length-diameter dependence to the kinetic model, we determine the power exponent, which represents the dimensionality of surface diffusion, and results to be different for planar vs. nonplanar nanowires. Excellent correlation between the model predictions and the data is obtained for surface-guided Au-catalyzed ZnSe and ZnS nanowires growing on both flat and faceted sapphire surfaces. These data are compared with those of nonplanar nanowire growth under similar conditions. The results indicate that, whereas nonplanar growth is usually dominated by surface diffusion of precursor adatoms over the nanowire walls, planar growth is dominated by surface diffusion over the substrate. This mechanism of planar nanowire growth can be extended to a broad range of material-substrate combinations for higher control toward large-scale integration into practical devices.

2.
Nano Lett ; 22(19): 8025-8031, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36095301

RESUMEN

We demonstrate self-sensing tungsten disulfide nanotube (WS2 NT) torsional resonators. These resonators exhibit all-electrical self-sensing operation with electrostatic excitation and piezoresistive motion detection. We show that the torsional motion of the WS2 NT resonators results in a change of the nanotube electrical resistance, with the most significant change around their mechanical resonance, where the amplitude of torsional vibrations is maximal. Atomic force microscopy analysis revealed the torsional and bending stiffness of the WS2 NTs, which we used for modeling the behavior of the WS2 NT devices. In addition, the solution of the electrostatic boundary value problem shows how the spatial potential and electrostatic field lines around the device impact its capacitance. The results uncover the coupling between the electrical and mechanical behaviors of WS2 and emphasize their potential to operate as key components in functional devices, such as nanosensors and radio frequency devices.

3.
Nano Lett ; 20(2): 953-962, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869233

RESUMEN

While various electronic components based on carbon nanotubes (CNTs) have already been demonstrated, the realization of miniature electromagnetic coils based on CNTs remains a challenge. Coils made of single-wall CNTs with accessible ends for contacting have been recently demonstrated but were found unsuitable to act as electromagnetic coils because of electrical shorting between their turns. Coils made of a few-wall CNT could in principle allow an insulated flow of current and thus be potential candidates for realizing CNT-based electromagnetic coils. However, no such CNT structure has been produced so far. Here, we demonstrate the formation of few-wall CNT coils and characterize their structural, optical, vibrational, and electrical properties using experimental and computational tools. The coils are made of CNTs with 2, 3, or 4 walls. They have accessible ends for electrical contacts and low defect densities. The coil diameters are on the order of one micron, like those of single-wall CNT coils, despite the higher rigidity of few-wall CNTs. Coils with as many as 163 turns were found, with their turns organized in a rippled raft configuration. These coils are promising candidates for a variety of miniature devices based on electromagnetic coils, such as electromagnets, inductors, transformers, and motors. Being chirally and enantiomerically pure few-wall CNT bundles, they are also ideal for fundamental studies of interwall coupling and superconductivity in CNTs.

4.
Nano Lett ; 18(1): 424-433, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29210586

RESUMEN

All-inorganic lead halide perovskite nanowires have been the focus of increasing interest since they exhibit improved stability compared to their hybrid organic-inorganic counterparts, while retaining their interesting optical and optoelectronic properties. Arrays of surface-guided nanowires with controlled orientations and morphology are promising as building blocks for various applications and for systematic research. We report the horizontal and aligned growth of CsPbBr3 nanowires with a uniform crystallographic orientation on flat and faceted sapphire surfaces to form arrays with 6-fold and 2-fold symmetries, respectively, along specific directions of the sapphire substrate. We observed waveguiding behavior and diameter-dependent photoluminescence emission well beyond the quantum confinement regime. The arrays were easily integrated into multiple devices, displaying p-type behavior and photoconductivity. Photodetectors based on those nanowires exhibit the fastest rise and decay times for any CsPbBr3-based photodetectors reported so far. One-dimensional arrays of halide perovskite nanowires are a promising platform for investigating the intriguing properties and potential applications of these unique materials.

5.
Chemistry ; 24(44): 11354-11363, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29873843

RESUMEN

The synthesis and characterization of nanotubes from misfit layered compounds (MLCs) of the type (LnS)1+y TaS2 (denoted here as LnS-TaS2 ; Ln=Pr, Sm, Gd, and Yb), not reported before, are described (the bulk compound YbS-LaS2 was not previously documented). Transmission electron microscopy and selected area electron diffraction showed that the interlayer spacing along the c axis decreased with an increase in the atomic number of the lanthanide atom, which suggested tighter interaction between the LnS layer and TaS2 for the late lanthanides. The Raman spectra of the tubules were studied and compared to those of the bulk MLC compounds. Similar to the bulk MLCs, the Raman spectra could be divided into the low-frequency modes (110-150 cm-1 ) of the LnS lattice and the high-frequency modes (250-400 cm-1 ) of the TaS2 lattice. The Raman spectra indicated that the vibrational lattice modes of the strained layers in the tubes were stiffer than those in the bulk compounds. Furthermore, the modes of the late lanthanides were higher in energy than those of the earlier lanthanides, which suggested larger charge transfer between the LnS and TaS2 layers for the late lanthanides. Polarized Raman measurements showed the expected binodal intensity profile (antenna effect). The intensity ratio of the Raman signal showed that the E2g mode of TaS2 was more sensitive to the light-polarization effect than its A1g mode. These nanotubes are expected to reveal interesting low-temperature quasi-1D transport behavior.

6.
Nano Lett ; 17(2): 842-850, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28094977

RESUMEN

The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

7.
Nano Lett ; 17(1): 28-35, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28032770

RESUMEN

We study for the first time the resonant torsional behaviors of inorganic nanotubes, specifically tungsten disulfide (WS2) and boron nitride (BN) nanotubes, and compare them to that of carbon nanotubes. We have found WS2 nanotubes to have the highest quality factor (Q) and torsional resonance frequency, followed by BN nanotubes and carbon nanotubes. Dynamic and static torsional spring constants of the various nanotubes were found to be different, especially in the case of WS2, possibly due to a velocity-dependent intershell friction. These results indicate that inorganic nanotubes are promising building blocks for high-Q nanoelectromechanical systems (NEMS).

8.
J Am Chem Soc ; 139(44): 15958-15967, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29035565

RESUMEN

Tri-gate transistors offer better performance than planar transistors by exerting additional gate control over a channel from two lateral sides of semiconductor nanowalls (or "fins"). Here we report the bottom-up assembly of aligned CdS nanowalls by a simultaneous combination of horizontal catalytic vapor-liquid-solid growth and vertical facet-selective noncatalytic vapor-solid growth and their parallel integration into tri-gate transistors and photodetectors at wafer scale (cm2) without postgrowth transfer or alignment steps. These tri-gate transistors act as enhancement-mode transistors with an on/off current ratio on the order of 108, 4 orders of magnitude higher than the best results ever reported for planar enhancement-mode CdS transistors. The response time of the photodetector is reduced to the submicrosecond level, 1 order of magnitude shorter than the best results ever reported for photodetectors made of bottom-up semiconductor nanostructures. Guided semiconductor nanowalls open new opportunities for high-performance 3D nanodevices assembled from the bottom up.

9.
Nano Lett ; 16(4): 2152-8, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26708150

RESUMEN

Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos.

10.
Proc Natl Acad Sci U S A ; 110(38): 15195-200, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23904485

RESUMEN

The ability to assemble discrete nanowires (NWs) with nanoscale precision on a substrate is the key to their integration into circuits and other functional systems. We demonstrate a bottom-up approach for massively parallel deterministic assembly of discrete NWs based on surface-guided horizontal growth from nanopatterned catalyst. The guided growth and the catalyst nanopattern define the direction and length, and the position of each NW, respectively, both with unprecedented precision and yield, without the need for postgrowth assembly. We used these highly ordered NW arrays for the parallel production of hundreds of independently addressable single-NW field-effect transistors, showing up to 85% yield of working devices. Furthermore, we applied this approach for the integration of 14 discrete NWs into an electronic circuit operating as a three-bit address decoder. These results demonstrate the feasibility of massively parallel "self-integration" of NWs into electronic circuits and functional systems based on guided growth.


Asunto(s)
Electricidad , Nanotecnología/métodos , Nanocables/química , Semiconductores/tendencias
11.
Nano Lett ; 15(9): 5899-904, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26226057

RESUMEN

This work addresses the problem of how a nano-object adheres to a supporting media. The case of study are the serpentine-like structures of single-wall carbon nanotubes (SWNTs) grown on vicinal crystalline quartz. We develop in situ nanomanipulation and confocal Raman spectroscopy in such systems, and to explain the results, we propose a dynamical equation in which static friction is treated phenomenologically and implemented as cutoff for velocities, via Heaviside step function and an adhesion force tensor. We demonstrate that the strain profiles observed along the SWNTs are due to anisotropic adhesion, adhesion discontinuities, strain avalanches, and memory effects. The equation is general enough to make predictions for various one- and two-dimensional nanosystems adhered to a supporting media.

12.
Nano Lett ; 14(11): 6132-7, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25275220

RESUMEN

Owing to their mechanically tunable electronic properties, carbon nanotubes (CNTs) have been widely studied as potential components for nanoelectromechanical systems (NEMS); however, the mechanical properties of multiwall CNTs are often limited by the weak shear interactions between the graphitic layers. Boron nitride nanotubes (BNNTs) exhibit a strong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical properties of CNTs in one hybrid structure? Here, we report the first experimental study of boron carbonitride nanotube (BCNNT) mechanics and electromechanics. We found that the hybrid BCNNTs are up to five times torsionally stiffer and stronger than CNTs, thereby retaining to a large extent the ultrahigh torsional stiffness of BNNTs. At the same time, we show that the electrical response of BCNNTs to torsion is 1 to 2 orders of magnitude higher than that of CNTs. These results demonstrate that BCNNTs could be especially attractive building blocks for NEMS.

13.
Nano Lett ; 13(11): 5491-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24134637

RESUMEN

We report the guided growth of highly coherent, horizontal GaN nanowires (NWs) on atomically flat singular SiC (0001) and on periodically stepped vicinal SiC (0001) substrates. On singular SiC (0001) the NWs grow in six symmetry-equivalent directions, while on vicinal SiC (0001) the NWs grow only in the two directions parallel to the atomic step edges. All of the NWs have the same epitaxial relations with the substrate on both singular and vicinal (0001). Owing to the low mismatch (~3.4%) with the substrate, the NWs grow highly coherent, with a much lower density of misfit dislocations than previously observed on sapphire. This is also the first observation of NW VLS growth along atomic steps. Epitaxially coherent guided NWs have potential uses in many fields, including high-power electronics, light-emitting diodes (LEDs), and laser diodes.

14.
Nano Lett ; 13(8): 3736-41, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23899194

RESUMEN

We report the first transistor based on inorganic nanotubes exhibiting mobility values of up to 50 cm(2) V(-1) s(-1) for an individual WS2 nanotube. The current-carrying capacity of these nanotubes was surprisingly high with respect to other low-dimensional materials, with current density at least 2.4 × 10(8) A cm(-2). These results demonstrate that inorganic nanotubes are promising building blocks for high-performance electronic applications.

15.
ACS Appl Mater Interfaces ; 16(2): 2637-2648, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174359

RESUMEN

Infrared photodetectors are essential devices for telecommunication and night vision technologies. Two frequently used materials groups for this technology are III-V and II-VI semiconductors, notably, mercury-cadmium-telluride alloys (MCT). However, growing them usually requires expensive substrates that can only be provided on small scales, and their large-scale production as crystalline nanostructures is challenging. In this paper, we present a two-stage process for creating aligned MCT nanowires (NWs). First, we report the growth of planar CdTe nanowires with controlled orientations on flat and faceted sapphire substrates via the vapor-liquid-solid (VLS) mechanism. We utilize this guided growth approach to parallelly integrate the NWs into fast near-infrared photodetectors with characteristic rise and fall times of ∼100 µs at room temperature. An epitaxial effect of the planar growth and the unique structure of the NWs, including size and composition, are suggested to explain the high performance of the devices. In the second stage, we show that cation exchange with mercury can be applied, resulting in a band gap narrowing of up to 55 meV, corresponding to an exchange of 2% Cd with Hg. This work opens new opportunities for creating small, fast, and sensitive infrared detectors with an engineered band gap operating at room temperature.

16.
Nano Lett ; 12(12): 6347-52, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23130892

RESUMEN

We report the experimental and theoretical study of boron nitride nanotube (BNNT) torsional mechanics. We show that BNNTs exhibit a much stronger mechanical interlayer coupling than carbon nanotubes (CNTs). This feature makes BNNTs up to 1 order of magnitude stiffer and stronger than CNTs. We attribute this interlayer locking to the faceted nature of BNNTs, arising from the polarity of the B-N bond. This property makes BNNTs superior candidates to replace CNTs in nanoelectromechanical systems (NEMS), fibers, and nanocomposites.


Asunto(s)
Compuestos de Boro/química , Nanotubos/química , Nanotubos/ultraestructura , Nanotubos de Carbono/química , Resistencia al Corte , Estrés Mecánico
17.
ACS Nano ; 16(6): 9086-9094, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35584237

RESUMEN

Optoelectronic micro- and nanostructures have a vast parameter space to explore for modification and optimization of their functional performance. This paper reports on a data-led approach using high-throughput single nanostructure spectroscopy to probe >8000 structures, allowing for holistic analysis of multiple material and optoelectronic parameters with statistical confidence. The methodology is applied to surface-guided CsPbBr3 nanowires, which have complex and interrelated geometric, structural, and electronic properties. Photoluminescence-based measurements, studying both the surface and embedded interfaces, exploits the natural inter nanowire geometric variation to show that increasing the nanowire width reduces the optical bandgap, increases the recombination rate in the nanowire bulk, and reduces the rate at the surface interface. A model of carrier recombination and diffusion ascribes these trends to carrier density and strain effects at the interfaces and self-consistently retrieves values for carrier mobility, trap densities, bandgap, diffusion length, and internal quantum efficiency. The model predicts parameter trends, such as the variation of internal quantum efficiency with width, which is confirmed by experimental verification. As this approach requires minimal a priori information, it is widely applicable to nano- and microscale materials.

18.
ACS Nano ; 16(11): 18757-18766, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36305551

RESUMEN

Surface-guided growth has proven to be an efficient approach for the production of nanowire arrays with controlled orientations and their large-scale integration into electronic and optoelectronic devices. Much has been learned about the different mechanisms of guided nanowire growth by epitaxy, graphoepitaxy, and artificial epitaxy. A model describing the kinetics of surface-guided nanowire growth has been recently reported. Yet, many aspects of the surface-guided growth process remain unclear due to a lack of its observation in real time. Here we observe how surface-guided nanowires grow in real time by in situ scanning electron microscopy (SEM). Movies of ZnSe surface-guided nanowires growing on periodically faceted substrates of annealed M-plane sapphire clearly show how the nanowires elongate along the substrate nanogrooves while pushing the catalytic Au nanodroplet forward at the tip of the nanowire. The movies reveal the timing between competing processes, such as planar vs nonplanar growth, catalyst-selective vapor-liquid-solid elongation vs nonselective vapor-solid thickening, and the effect of topographic discontinuities of the substrate on the growth direction, leading to the formation of kinks and loops. Contrary to some observations for nonplanar nanowire growth, planar nanowires are shown to elongate at a constant rate and not by jumps. A decrease in precursor concentration as it is consumed after long reaction time causes the nanowires to shrink back instead of growing, thus indicating that the process is reversible and takes place near equilibrium. This real-time study of surface-guided growth, enabled by in situ SEM, enables a better understanding of the formation of nanostructures on surfaces.

19.
Nat Commun ; 13(1): 4089, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835772

RESUMEN

Strain relaxation mechanisms during epitaxial growth of core-shell nanostructures play a key role in determining their morphologies, crystal structure and properties. To unveil those mechanisms, we perform atomic-scale aberration-corrected scanning transmission electron microscopy studies on planar core-shell ZnSe@ZnTe nanowires on α-Al2O3 substrates. The core morphology affects the shell structure involving plane bending and the formation of low-angle polar boundaries. The origin of this phenomenon and its consequences on the electronic band structure are discussed. We further use monochromated valence electron energy-loss spectroscopy to obtain spatially resolved band-gap maps of the heterostructure with sub-nanometer spatial resolution. A decrease in band-gap energy at highly strained core-shell interfacial regions is found, along with a switch from direct to indirect band-gap. These findings represent an advance in the sub-nanometer-scale understanding of the interplay between structure and electronic properties associated with highly mismatched semiconductor heterostructures, especially with those related to the planar growth of heterostructured nanowire networks.

20.
Nano Lett ; 10(11): 4742-9, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20957987

RESUMEN

We present a new approach for the creation of nanowires with well-defined complex geometries by electrodeposition onto self-organized single-walled carbon nanotubes. The concept is demonstrated by generation of continuous Au nanowires with various geometries, including parallel arrays, serpentines, and coils. The generality of this approach is further illustrated by synthesizing Bi(2)Te(3) nanowires. Our concept of "drawing with nanotubes" offers to combine different material properties with complex geometries on the route to new functional nanosystems.


Asunto(s)
Cristalización/métodos , Galvanoplastia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA