Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36912250

RESUMEN

Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.


Asunto(s)
Células Madre Adultas , Genes Homeobox , Humanos , Adulto , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Células Madre , Huesos
2.
Proc Natl Acad Sci U S A ; 116(14): 6995-7004, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894483

RESUMEN

Aging is associated with impaired tissue regeneration. Stem cell number and function have been identified as potential culprits. We first demonstrate a direct correlation between stem cell number and time to bone fracture union in a human patient cohort. We then devised an animal model recapitulating this age-associated decline in bone healing and identified increased cellular senescence caused by a systemic and local proinflammatory environment as the major contributor to the decline in skeletal stem/progenitor cell (SSPC) number and function. Decoupling age-associated systemic inflammation from chronological aging by using transgenic Nfkb1KO mice, we determined that the elevated inflammatory environment, and not chronological age, was responsible for the decrease in SSPC number and function. By using a pharmacological approach inhibiting NF-κB activation, we demonstrate a functional rejuvenation of aged SSPCs with decreased senescence, increased SSPC number, and increased osteogenic function. Unbiased, whole-genome RNA sequencing confirmed the reversal of the aging phenotype. Finally, in an ectopic model of bone healing, we demonstrate a functional restoration of regenerative potential in aged SSPCs. These data identify aging-associated inflammation as the cause of SSPC dysfunction and provide mechanistic insights into its reversal.


Asunto(s)
Envejecimiento/metabolismo , Curación de Fractura , Fracturas Óseas/metabolismo , Osteogénesis , Células Madre/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Femenino , Fracturas Óseas/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Células Madre/patología
3.
Aging (Albany NY) ; 13(10): 13421-13429, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035186

RESUMEN

Aging tissues undergo a progressive decline in regenerative potential. This decline in regenerative responsiveness has been attributed to changes in tissue-specific stem cells and their niches. In bone, aged skeletal stem/progenitor cell dysfunction is characterized by decreased frequency and impaired osteogenic differentiation potential. This aging phenotype ultimately results in compromised regenerative responsiveness to injury. The age-associated increase of inflammatory mediators, known as inflamm-aging, has been identified as the main culprit driving skeletal stem cell dysfunction. Here, we utilized a mouse model of parabiosis to decouple aging from inflammation. Using the Nfkb1-/- mouse as a model of inflamm-aging, we demonstrate that a shared systemic circulation between a wild-type and Nfkb1-/- mouse results in an aging phenotype of the wild-type skeletal stem and progenitor cells, shown by CFU-fs and osteogenic and adipogenic differentiation assays. Our findings demonstrate that exposure to an inflammatory secretome results in a phenotype similar to the one observed in aging.


Asunto(s)
Envejecimiento/patología , Inflamación/metabolismo , Inflamación/patología , Músculo Esquelético/patología , FN-kappa B/metabolismo , Células Madre/metabolismo , Animales , Médula Ósea/patología , Diferenciación Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
4.
Oncogene ; 38(29): 5766-5777, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31239516

RESUMEN

We previously showed that KLF4, a gene highly expressed in murine prostate stem cells, blocks the progression of indolent intraepithelial prostatic lesions into aggressive and rapidly growing tumors. Here, we show that the anti-tumorigenic effect of KLF4 extends to PC3 human prostate cancer cells growing in the bone. We compared KLF4 null cells with cells transduced with a DOX-inducible KLF4 expression system, and find KLF4 function inhibits PC3 growth in monolayer and soft agar cultures. Furthermore, KLF4 null cells proliferate rapidly, forming large, invasive, and osteolytic tumors when injected into mouse femurs, whereas KLF4 re-expression immediately after their intra-femoral inoculation blocks tumor development and preserves a normal bone architecture. KLF4 re-expression in established KLF4 null bone tumors inhibits their osteolytic effects, preventing bone fractures and inducing an osteogenic response with new bone formation. In addition to these profound biological changes, KLF4 also induces a transcriptional shift from an osteolytic program in KLF4 null cells to an osteogenic program. Importantly, bioinformatic analysis shows that genes regulated by KLF4 overlap significantly with those expressed in metastatic prostate cancer patients and in three individual cohorts with bone metastases, strengthening the clinical relevance of the findings in our xenograft model.


Asunto(s)
Neoplasias Óseas/secundario , Factores de Transcripción de Tipo Kruppel/fisiología , Osteólisis/fisiopatología , Neoplasias de la Próstata/patología , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Estudios de Cohortes , Xenoinjertos , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA