Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32847857

RESUMEN

Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.


Asunto(s)
Muerte Celular/fisiología , Reoviridae/fisiología , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular , Humanos , Mitocondrias/metabolismo , Viroterapia Oncolítica/métodos , Virus Oncolíticos , Orthoreovirus de los Mamíferos/genética , Reoviridae/genética , Proteínas Virales/metabolismo
2.
Apoptosis ; 18(3): 271-85, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23329178

RESUMEN

Chronic inhalation of crystalline silica is an occupational hazard that results in silicosis due to the toxicity of silica particles to lung cells. Alveolar macrophages play an important role in clearance of these particles, and exposure of macrophages to silica particles causes cell death and induction of markers of apoptosis. Using time-lapse imaging of MH-S alveolar macrophages, a temporal sequence was established for key molecular events mediating cell death. The results demonstrate that 80 % of macrophages die by apoptosis and 20 % by necrosis by clearly distinguishable pathways. The earliest detectable cellular event is phago-lysosomal leakage, which occurs between 30 and 120 min after particle uptake in both modes of death. Between 3 and 6 h later, cells undergoing apoptosis showed a dramatic increase in mitochondrial transmembrane potential, closely correlated with activation of both caspase-3 and 9 and cell blebbing. Externalization of phosphatidyl serine and nuclear condensation occurred 30 min-2 h after the initiation of cell blebbing. Cells undergoing necrosis demonstrated mitochondrial membrane depolarization but not hyperpolarization and no caspase activation. Cell swelling followed the decrease in mitochondrial membrane potential, distinguishing necrosis from apoptosis. All cells undergoing apoptosis followed the same temporal sequence, but the time lag between phago-lysosomal leakage and the other events was highly variable from cell to cell. These results demonstrate that crystalline silica exposure can result in either apoptosis or necrosis and each occurs in a well-defined but temporally variable order. The long time gap between phago-lysosomal leakage and hyperpolarization is not consistent with a simple scenario of phago-lysosomal leakage leading directly to cell death. The results highlight the importance of using a cell by cell time-lapse analysis to investigate a complex pathway such as silica induced cell death.


Asunto(s)
Apoptosis , Macrófagos Alveolares/patología , Necrosis , Fagocitosis/fisiología , Dióxido de Silicio/toxicidad , Animales , Caspasa 3/metabolismo , Línea Celular , Lisosomas/metabolismo , Macrófagos Alveolares/citología , Macrófagos Alveolares/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Ratones
3.
Cancer Res ; 83(20): 3442-3461, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37470810

RESUMEN

Although external beam radiotherapy (xRT) is commonly used to treat central nervous system (CNS) tumors in patients of all ages, young children treated with xRT frequently experience life-altering and dose-limiting neurocognitive impairment (NI) while adults do not. The lack of understanding of mechanisms responsible for these differences has impeded the development of neuroprotective treatments. Using a newly developed mouse model of xRT-induced NI, we found that neurocognitive function is impaired by ionizing radiation in a dose- and age-dependent manner, with the youngest animals being most affected. Histologic analysis revealed xRT-driven neuronal degeneration and cell death in neurogenic brain regions in young animals but not adults. BH3 profiling showed that neural stem and progenitor cells, neurons, and astrocytes in young mice are highly primed for apoptosis, rendering them hypersensitive to genotoxic damage. Analysis of single-cell RNA sequencing data revealed that neural cell vulnerability stems from heightened expression of proapoptotic genes including BAX, which is associated with developmental and mitogenic signaling by MYC. xRT induced apoptosis in primed neural cells by triggering a p53- and PUMA-initiated, proapoptotic feedback loop requiring cleavage of BID and culminating in BAX oligomerization and caspase activation. Notably, loss of BAX protected against apoptosis induced by proapoptotic signaling in vitro and prevented xRT-induced apoptosis in neural cells in vivo as well as neurocognitive sequelae. On the basis of these findings, preventing xRT-induced apoptosis specifically in immature neural cells by blocking BAX, BIM, or BID via direct or upstream mechanisms is expected to ameliorate NI in pediatric patients with CNS tumor. SIGNIFICANCE: Age- and differentiation-dependent apoptotic priming plays a pivotal role in driving radiotherapy-induced neurocognitive impairment and can be targeted for neuroprotection in pediatric patients.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Animales , Niño , Preescolar , Humanos , Ratones , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Muerte Celular , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
4.
Appl Immunohistochem Mol Morphol ; 30(10): 647-653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36222506

RESUMEN

The membrane protein angiotensin-converting enzyme-2 (ACE2) has gained notoriety as the receptor for severe acute respiratory syndrome coronavirus 2. Prior evidence has shown ACE2 is expressed within the liver but its function has not been fully discerned. Here, we utilized novel methodology to assess ACE2 expression in pediatric immune-mediated liver disease to better understand its presence in liver diseases and its role during infections such as COVID-19. We stained liver tissue with ACE2-specific immunofluorescent antibodies, analyzed via confocal microscopy. Computational deep learning-based segmentation models identified nuclei and cells, allowing the quantification of mean cellular and cytosolic immunofluorescent. Spatial transcriptomics provided high-throughput gene expression analysis in tissue to determine cellular composition for ACE2 expression. ACE2 plasma expression was quantified via enzyme-linked immunosorbent assay. High ACE2 expression was seen at the apical surface of cholangiocytes, with lower expression within hepatocyte cytosol and nonparenchymal cells ( P <0.001). Children with liver disease had higher ACE2 hepatic expression than pediatric control tissue ( P <0.001). Adult control tissue had higher expression than pediatric control ( P <0.001). Plasma ACE2 was not found to be statistically different between samples. Spatial transcriptomics identified cell composition of ACE2-expressing spots containing antibody-secreting cells. Our results show ACE2 expression throughout the liver, with strongest localization to cholangiocyte membranes. Machine learning can be used to rapidly identify hepatic cellular components for histologic analysis. ACE2 expression in the liver may be increased in pediatric liver disease. Future work is needed to better understand the role of ACE2 in chronic disease and acute infections.


Asunto(s)
COVID-19 , Hepatopatías , Humanos , Niño , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Angiotensinas
5.
Sci Adv ; 7(34)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34407940

RESUMEN

Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Apoptosis/genética , COVID-19/genética , Perfilación de la Expresión Génica/métodos , Factores de Edad , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Células Cultivadas , Chlorocebus aethiops , Femenino , Humanos , Lactante , Pulmón/citología , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Células Vero , Internalización del Virus
6.
J Control Release ; 328: 846-858, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33166606

RESUMEN

The use of intraperitoneal administration of nanoparticles has been reported to facilitate higher concentrations of nanoparticles in metastatic peritoneal tumors. While this strategy is appealing for limiting systemic exposure of nanocarrier delivered toxic cargoes and increasing nanoparticle concentrations in avascular peritoneal tumors, little is known about the mechanism of nanoparticle accumulation on tumor tissues and currently, no nanoparticle-based product has been approved for intraperitoneal delivery. Here, we investigated the nanoparticle-specific characteristics that led to increased peritoneal tumor accumulation using MCM-41 type mesoporous silica nanoparticles as our model system. We also investigated the components of the peritoneal tumor stroma that facilitated nanoparticle-tumor interaction. The tumor extracellular matrix is the main factor driving these interactions, specifically the interaction of nanoparticles with collagen. Upon disruption of the collagen matrix, nanoparticle accumulation was reduced by 50%. It is also notable that the incorporation of targeting ligands did not increase overall tumor accumulation in vivo while it significantly increased nanoparticle accumulation in vitro. The use of other particle chemistries did not grossly affect the tumor targetability, but additional concerns arose when those tested particles exhibited significant systemic exposure. Mesoporous silica nanoparticles are advantageous for intraperitoneal administration for the treatment of peritoneal metastasis due to their physical stability, tumor targetability, strong interaction with the collagen matrix, and extended peritoneal residence time. Maximizing nanoparticle interaction with the tumor extracellular matrix is critical for developing strategies to deliver emerging therapeutics for peritoneal cancer treatment using nanocarriers.


Asunto(s)
Nanopartículas , Neoplasias Peritoneales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Inyecciones Intraperitoneales , Neoplasias Peritoneales/tratamiento farmacológico , Porosidad , Dióxido de Silicio
7.
bioRxiv ; 2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32935109

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) maintains cardiovascular and renal homeostasis but also serves as the entry receptor for the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), the causal agent of novel coronavirus disease 2019 (COVID-19). COVID-19 disease severity is typically lower in pediatric patients than adults (particularly the elderly), but higher rates of hospitalizations requiring intensive care are observed in infants than in older children - the reasons for these differences are unknown. ACE2 is expressed in several adult tissues and cells, including alveolar type 2 cells of the distal lung epithelium, but expression at other ages is largely unexplored. Here we show that ACE2 transcripts are expressed in the lung and trachea shortly after birth, downregulated during childhood, and again expressed at high levels in late adulthood. Notably, the repertoire of cells expressing ACE2 protein in the mouse lung and airways shifts during key phases of lung maturation. In particular, podoplanin-positive cells, which are likely alveolar type I cells responsible for gas exchange, express ACE2 only in advanced age. Similar patterns of expression were evident in analysis of human lung tissue from over 100 donors, along with extreme inter- and intra-individual heterogeneity in ACE2 protein expression in epithelial cells. Furthermore, we find that apoptosis, which is a natural host defense system against viral infection, is dynamically regulated during lung maturation, resulting in periods of heightened apoptotic priming and dependence on pro-survival BCL-2 family proteins including MCL-1. Infection of human lung cells with SARS-CoV-2 triggers an unfolded protein stress response and upregulation of the endogenous MCL-1 inhibitor Noxa; in young individuals, MCL-1 inhibition is sufficient to trigger apoptosis in lung epithelial cells and may thus limit virion production and inflammatory signaling. Overall, we identify strong and distinct correlates of COVID-19 disease severity across lifespan and advance our understanding of the regulation of ACE2 and cell death programs in the mammalian lung. Furthermore, our work provides the framework for translation of apoptosis modulating drugs as novel treatments for COVID-19.

8.
Nat Cell Biol ; 22(2): 151-158, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32015439

RESUMEN

Under proteotoxic stress, some cells survive whereas others die. The mechanisms governing this heterogeneity in cell fate remain unknown. Here we report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones1,2, is integral to cell-fate decisions underlying survival or death. During stress, HSF1 drives chaperone expression but also accumulates separately in nuclear stress bodies called foci3-6. Foci formation has been regarded as a marker of cells actively upregulating chaperones3,6-10. Using multiplexed tissue imaging, we observed HSF1 foci in human tumours. Paradoxically, their presence inversely correlated with chaperone expression. By live-cell microscopy and single-cell analysis, we found that foci dissolution rather than formation promoted HSF1 activity and cell survival. During prolonged stress, the biophysical properties of HSF1 foci changed; small, fluid condensates enlarged into indissoluble gel-like arrangements with immobilized HSF1. Chaperone gene induction was reduced in such cells, which were prone to apoptosis. Quantitative analysis suggests that survival under stress results from competition between concurrent but opposing mechanisms. Foci may serve as sensors that tune cytoprotective responses, balancing rapid transient responses and irreversible outcomes.


Asunto(s)
Adaptación Fisiológica/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción del Choque Térmico/genética , Proteínas de Choque Térmico/genética , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transición de Fase , Transducción de Señal , Análisis de la Célula Individual , Transcripción Genética
9.
Am J Respir Cell Mol Biol ; 39(5): 619-27, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18556590

RESUMEN

Silicosis is a chronic lung disease induced by the inhalation of crystalline silica. Exposure of cultured macrophages to crystalline silica leads to cell death; however, the mechanism of cell-particle interaction, the fate of particles, and the cause of death are unknown. Time-lapse imaging shows that mouse macrophages avidly bind particles that settle onto the cell surface and that cells also extend protrusions to capture distant particles. Using confocal optical sectioning, silica particles were shown to be present within the cytoplasmic volume of live cells. In addition, electron microscopy and elemental analysis showed silica in internal cellular sections. To further examine the phagocytosis process, the kinetics of particle uptake was quantified using an assay in which cells were exposed to ovalbumin (OVA)-coated particles, and an anti-OVA antibody was used to distinguish surface-bound from internalized particles. Fc receptor-mediated uptake of antibody-coated silica particles was nearly complete within 5 minutes. In contrast, no OVA-coated particles were internalized at this time. After 30 minutes, 30% of bound silica was internalized and uptake continued slowly thereafter. OVA-coated latex beads, regardless of surface charge, were internalized at a similarly slow rate. These results demonstrate that macrophages internalize silica and that nonopsonized phagocytosis occurs by a temporally, and possibly mechanistically, distinct pathway from Fc receptor-mediated phagocytosis. Eighty percent of macrophages die within 12 hours of silica exposure. Neither OVA coating nor tetramethylrhodamine isothiocyanate labeling has any effect on cell death. Interestingly, antibody coating dramatically reduces silica toxicity. We hypothesize that the route of particle entry and subsequent phagosome trafficking affects the toxicity of internalized particles.


Asunto(s)
Macrófagos/metabolismo , Fagocitosis , Dióxido de Silicio/metabolismo , Animales , Apoptosis , Línea Celular , Pollos , Cinética , Macrófagos/ultraestructura , Ratones , Microscopía Electrónica , Ovalbúmina/química , Receptores Fc/metabolismo , Dióxido de Silicio/química
10.
Methods Mol Biol ; 1519: 55-77, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27815873

RESUMEN

Chronic inhalation of silica in various occupational settings results in the development of silicosis, a disease characterized by lung fibrosis. Uptake of silica particles by alveolar macrophages results in cell death and this is one of the contributing factors to the development of silicosis. We have characterized the uncoated or protein-coated (non-opsonized) and Fc receptor-mediated (antibody-opsonized) routes of silica phagocytosis and toxicity. Numerous microscopy techniques and fluorescent probes are outlined in this chapter to carefully measure particle uptake, by macrophages, phagosome maturation, phagosomal reactive oxygen species generation, phagolysosomal leakage, and cell death.


Asunto(s)
Lisosomas/metabolismo , Macrófagos/patología , Fagocitosis , Fagosomas/metabolismo , Dióxido de Silicio/toxicidad , Análisis de la Célula Individual/métodos , Actinas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Exocitosis/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Lisosomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Ratones , Proteínas Opsoninas/metabolismo , Fagocitosis/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fosfatidilserinas/metabolismo , Propidio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Coloración y Etiquetado , Factores de Tiempo , Técnicas de Cultivo de Tejidos
11.
Mol Biol Cell ; 26(18): 3150-64, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26202463

RESUMEN

Chronic inhalation of silica particles causes lung fibrosis and silicosis. Silica taken up by alveolar macrophages causes phagolysosomal membrane damage and leakage of lysosomal material into the cytoplasm to initiate apoptosis. We investigated the role of reactive oxygen species (ROS) in this membrane damage by studying the spatiotemporal generation of ROS. In macrophages, ROS generated by NADPH oxidase 2 (NOX2) was detected in phagolysosomes containing either silica particles or nontoxic latex particles. ROS was only detected in the cytoplasm of cells treated with silica and appeared in parallel with an increase in phagosomal ROS, as well as several hours later associated with mitochondrial production of ROS late in apoptosis. Pharmacological inhibition of NOX activity did not prevent silica-induced phagolysosomal leakage but delayed it. In Cos7 cells, which do not express NOX2, ROS was detected in silica-containing phagolysosomes that leaked. ROS was not detected in phagolysosomes containing latex particles. Leakage of silica-containing phagolysosomes in both cell types was transient, and after resealing of the membrane, endolysosomal fusion continued. These results demonstrate that silica particles can generate phagosomal ROS independent of NOX activity, and we propose that this silica-generated ROS can cause phagolysosomal leakage to initiate apoptosis.


Asunto(s)
NADPH Oxidasas/metabolismo , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/toxicidad , Animales , Apoptosis/efectos de los fármacos , Células COS , Línea Celular , Chlorocebus aethiops , Pulmón , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana , Ratones , NADPH Oxidasa 2 , Tamaño de la Partícula
12.
Curr Protoc Toxicol ; 58: Unit 4.40., 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24510543

RESUMEN

Programmed cell death is a complex process with new forms being discovered with regularity. Each pathway has a distinct and overlapping biochemical and physiological change occurring as the cell prepares for death. Detection of these changes can be facilitated by the availability of various fluorescent probes and advances in microscope systems. By analyzing these probes over time using fluorescence microscopy, the changes that occur in each cell en route to death can be analyzed on a cell-by-cell basis. While the timing of events varies considerably from cell to cell, it has been found that the sequence of events is highly conserved. Transient events, which would be difficult to detect using population averaging techniques, are readily detected when cells are analyzed individually in time lapse. The protocols in this unit describe using probes for real-time imaging of one of the apoptotic cell death pathways using various inducers, as well as the associated hardware necessary for imaging so that the imaging itself is not affecting cell viability.


Asunto(s)
Apoptosis/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Macrófagos/fisiología , Microscopía Fluorescente/métodos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Procesamiento de Imagen Asistido por Computador/instrumentación , Lisosomas/efectos de los fármacos , Lisosomas/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Microscopía Fluorescente/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA