RESUMEN
Two new depsidones, himantormiones A and B (1 and 2) were isolated and identified from the Antarctic lichen, Himantormia lugubris (Parmeliaceae), with seven known compounds (3-9). The structures of two new compounds (1 and 2) were determined by means of spectroscopic analyses, including 1D and 2D NMR and HR-MS. The isolated compounds were tested for antimicrobial and cytotoxic activities, where himantormione B (2) exhibited inhibitory effect against Staphylococcus aureus with the IC50 value of 7.01±0.85â mM. Compound 2 also exhibited strong cytotoxic activity against HCT116 cells (colon cancer) with the EC50 value of 1.11±0.85â µM, where that of the positive control, 5-fluouracil, was 9.4±1.90â µM.
Asunto(s)
Antiinfecciosos , Antineoplásicos , Líquenes , Parmeliaceae , Humanos , Líquenes/metabolismo , Regiones Antárticas , Antineoplásicos/química , Antiinfecciosos/metabolismo , Estructura MolecularRESUMEN
Anemarrhena asphodeloides is widely used in traditional Chinese medicine, and is known to possess antidiabetic and anti-inflammatory properties. Because inducible nitric oxide synthase (iNOS) plays an important role in inflammation, we investigated the inhibitory effects of two known phenolic compounds, nyasol (1) and broussonin A (2), from A. asphodeloides, on iNOS and its plausible mechanism of action. Compounds 1 and 2 exhibited inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Compounds 1 and 2 also suppressed the expressions of iNOS protein and mRNA. Moreover, compounds 1 and 2 suppressed the expression of inflammatory cytokines such as interleukin-1ß (IL-1ß) and interferon-ß (IFN-ß). They also inhibited the transcriptional activity of NF-κB and degradation of IκB-α, as well as the activation of Akt and ERK in LPS-stimulated RAW 264.7 cells. In in vivo animal model, compounds 1 and 2 significantly inhibited TPA-induced mouse ear edema. These results suggest that 1 and 2 suppress LPS-stimulated iNOS expression at the transcriptional level through modulating NF-κB and down-regulation of the Akt and ERK signaling pathways. Taken together, these findings indicate that the suppressive effects of 1 and 2 on iNOS expression might provide one possible mechanism for their anti-inflammatory activities.