Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Biotechnol ; 42(4): 431-448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37914546

RESUMEN

Cancer-on-chip (CoC) models, based on microfluidic chips harboring chambers for 3D tumor-cell culture, enable us to create a controlled tumor microenvironment (TME). CoC models are therefore increasingly used to systematically study effects of the TME on the various steps in cancer metastasis. Moreover, CoC models have great potential for developing novel cancer therapies and for predicting patient-specific response to cancer treatments. We review recent developments in CoC models, focusing on three main TME components: (i) the anisotropic extracellular matrix (ECM) architectures, (ii) the vasculature, and (iii) the immune system. We aim to provide guidance to biologists to choose the best CoC approach for addressing questions about the role of the TME in metastasis, and to inspire engineers to develop novel CoC technologies.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/patología , Microfluídica , Matriz Extracelular
2.
Front Bioeng Biotechnol ; 11: 1267021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076430

RESUMEN

Metastasis is a multi-step process that is critically affected by cues from the tumor micro-environment (TME), such as from the extracellular matrix (ECM). The role of the ECM in the onset of metastasis, invasion, is not yet fully understood. A further complicating factor is that the ECM in the TME is mostly heterogeneous, in particular presenting a basement membrane (BM) directly enveloping the tumor, which acts as a barrier to invasion into the surrounding stromal ECM. To systematically investigate the role of ECM in invasion, appropriate in vitro models with control over such ECM heterogeneity are essential. We present a novel high-throughput microfluidic approach to build such a model, which enables to capture the invasion of cancer cells from the tumor, through the BM and into the stromal tissue. We used a droplet-maker device to encapsulate cells in beads of a primary hydrogel mimicking BM, Matrigel, which were then embedded in a secondary hydrogel mimicking stromal ECM, collagen I. Our technology ultimately provides control over parameters such as tissue size, cell count and type, and ECM composition and stiffness. As a proof-of-principle, we carried out a comparative study with two breast cancer cell types, and we observed typical behavior consistent with previous studies. Highly invasive MDA-MB-231 cells showed single cell invasion behavior, whereas poorly invasive MCF-7 cells physically penetrated the surrounding matrix collectively. A comparative analysis conducted between our heterogeneous model and previous models employing a single type of hydrogel, either collagen I or Matrigel, has unveiled a substantial difference in terms of cancer cell invasion distance. Our in vitro model resembles an in vivo heterogeneous cancer microenvironment and can potentially be used for high throughput studies of cancer invasion.

3.
Methods Mol Biol ; 2373: 21-38, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34520004

RESUMEN

A relevant number of organ-on-chips is aimed at modeling epithelial/endothelial interfaces between tissue compartments. These barriers help tissue function either by protecting (e.g., endothelial blood-brain barrier) or by orchestrating relevant molecular exchanges (e.g., lung alveolar interface) in human organs. Models of these biological systems are aimed at characterizing the transport of molecules, drugs or drug carriers through these specific barriers. Multilayer microdevices are particularly appealing to this goal and techniques for embedding porous membranes within organ-on-chips are therefore at the basis of the development and use of such systems. Here, we discuss and provide procedures for embedding porous membranes within multilayer organ-on-chips. We present standard techniques involving both custom-made polydimethylsiloxane (PDMS) membranes and commercially available plastic membranes. In addition, we present a novel method for fabricating and bonding PDMS porous membranes by using a cost-effective epoxy resin in place of microfabricated silicon wafers as master molds.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Endotelio , Humanos , Membranas , Porosidad
4.
Biomed Mater Eng ; 29(6): 821-837, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30282337

RESUMEN

Two common abnormalities in ureters include primary refluxing megaureter (PRM) and primary obstructed megaureter (POM). The aim of this study was to represent the numerical simulation of the urine flow at the end of the ureter with vesicoureteral reflux (VUR) and POM during peristalsis. Methodologically, the peristalsis in the ureter wall was created using Gaussian distribution. Fluid-structure interaction (FSI) was applied to simulate urine-elastic wall interactions; and governing equations were solved using the arbitrary Lagrangian-Eulerian method. Theories such as wall elasticity, Newtonian fluid, and incompressible Navier-Stokes equations were used. Velocity fields, viscous stresses and volumetric outflow rate profiles were obtained through the simulation of the ureter with VUR and POM during peristalsis. In addition, the effect of urine viscosity on flow rate was investigated. When the bladder pressure increased, VUR occurred because of the ureterovesical junction (UVJ) dysfunction, leading to high stresses on the wall. In the POM, the outflow rate was ultimately zero, and stresses on the wall were severe in the obstructed section. Comparing the results demonstrated that the peristalsis leads to even further dilation of the prestenosis portion. It was also observed that the reflux occurs in the ureter with VUR when the bladder pressure is high. Additionally, the urine velocity during the peristalsis was higher than the non-peristaltic ureter.


Asunto(s)
Uréter/fisiopatología , Obstrucción Ureteral/fisiopatología , Reflujo Vesicoureteral/fisiopatología , Simulación por Computador , Elasticidad , Humanos , Modelos Teóricos , Distribución Normal , Peristaltismo , Presión , Estrés Mecánico , Vejiga Urinaria/fisiopatología , Micción , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA