RESUMEN
Cells cultured on stiff 2D substrates exert high intracellular force, resulting in mechanical deformation of their nuclei. This nuclear deformation (ND) plays a crucial role in the transport of Yes Associated Protein (YAP) from the cytoplasm to the nucleus. However, cells in vivo are in soft 3D environment with potentially much lower intracellular forces. Whether and how cells may deform their nuclei in 3D for YAP localization remains unclear. Here, by culturing human colon cancer associated fibroblasts (CAFs) on 2D, 2.5D, and 3D substrates, we differentiated the effects of stiffness, force, and ND on YAP localization. We found that nuclear translocation of YAP depends on the degree of ND irrespective of dimensionality, stiffness and total force. ND induced by the perinuclear force, not the total force, and nuclear membrane curvature correlate strongly with YAP activation. Immunostained slices of human tumors further supported the association between ND and YAP nuclear localization, suggesting ND as a potential biomarker for YAP activation in tumors. Additionally, we conducted quantitative analysis of the force dynamics of CAFs on 2D substrates to construct a stochastic model of YAP kinetics. This model revealed that the probability of YAP nuclear translocation, as well as the residence time in the nucleus follow a power law. This study provides valuable insights into the regulatory mechanisms governing YAP dynamics and highlights the significance of threshold activation in YAP localization. STATEMENT OF SIGNIFICANCE: Yes Associated Protein (YAP), a transcription cofactor, has been identified as one of the drivers of cancer progression. High tumor stiffness is attributed to driving YAP to the nucleus, wherein it activates pro-metastatic genes. Here we show, using cancer associated fibroblasts, that YAP translocation to the nucleus depends on the degree of nuclear deformation, irrespective of stiffness. We also identified that perinuclear force induced membrane curvature correlates strongly with YAP nuclear transport. A novel stochastic model of YAP kinetics unveiled a power law relationship between the activation threshold and persistence time of YAP in the nucleus. Overall, this study provides novel insights into the regulatory mechanisms governing YAP dynamics and the probability of activation that is of immense clinical significance.
Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Proteínas Señalizadoras YAP , Procesamiento Proteico-Postraduccional , Citoplasma/metabolismo , Neoplasias/metabolismo , Fibroblastos/metabolismoRESUMEN
Most solid tumors become stiff with progression of cancer. Cancer Associated Fibroblasts (CAFs), most abundant stromal cells in the tumor microenvironment (TME), are known to mediate such stiffening. While the biochemical crosstalk between CAFs and cancer cells have been widely investigated, it is not clear if and how CAFs in stiffer TME promote metastatic progression. To gather insights into the process, we controlled the mechanical stiffness of the substrates and collected gene expression data with human colorectal CAFs. We cultured human primary CAFs on 2D polyacrylamide hydrogels with increasing elastic modulus (E) of 1, 10 and 40 kPa, and performed genome-wide transcriptome analyses in these cells to identify expression levels of ~16000 genes. The high-quality RNAseq results can be an excellent data-source for bioinformatic analysis for identifying novel pathways and biomarkers in cancer development and metastatic progression. With thorough analysis and accurate interpretation, this data may help researchers understand the role of mechanical stiffness of the TME in CAF-cancer cell crosstalk.