Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 68(5): 1851-1864, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29672884

RESUMEN

Dyskerin pseudouridine synthase 1 (DKC1) is a conserved gene encoding the RNA-binding protein dyskerin, which is an essential component of the telomerase holoenzyme. DKC1 up-regulation is frequently observed in many different human cancers including hepatocellular carcinoma (HCC); however, its regulatory mechanisms remain unclear. Thus, we investigated the regulatory mechanism of DKC1 in HCC progression. We found that protein-disulfide isomerase-associated 3 (PDIA3) interacted with the DKC1 regulatory DNA in HCC cells but not in HCC cells with elevated reactive oxygen species (ROS) levels, using liquid chromatographic-tandem mass spectrometric analysis after isolating the DKC1 regulatory region binding proteins. PDIA3 repressed DKC1 expression in HCC cells by recognizing the G-quadruplex DNA at the DKC1 location. However, oxidative modification of PDIA3 induced by ROS redistributed this protein into the cytosolic regions, which stimulated DKC1 expression. We also identified Met338 in PDIA3 as the oxidatively modified residue and validated the effect of oxidative modification using an ectopic expression system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 knock-in system, and a xenograft mouse model. We observed that oxidatively modified PDIA3 promoted DKC1-mediated malignancy and survival of HCC cells in vitro and in vivo. HCC tissues showed a positive association with ROS, cytoplasmic PDIA3, and nuclear DKC1 levels. HCC patients with high PDIA3 protein and DKC1 mRNA levels also displayed reduced recurrence-free survival rates. Cumulatively, the results showed that cytoplasmic PDIA3 activity could be essential in raising DKC1 expression in HCC progression and predicting poor prognoses in HCC patients. Conclusion: Our study indicates that the elevated ROS levels in HCC modulate cytoplasmic PDIA3 levels, resulting in HCC cell survival through DKC1 up-regulation.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/mortalidad , Ratones , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Tasa de Supervivencia
2.
Hepatology ; 68(6): 2285-2300, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30300952

RESUMEN

Class I phosphoinositide 3-kinase (PI3K) signaling is a major pathway in human cancer development and progression. Among the four PI3K isoforms, PI3Kα and PI3Kß are ubiquitously expressed, whereas PI3Kγ and PI3Kδ are found primarily in leukocytes. Until now, PI3K targeting in solid tumors has focused on inhibiting PI3Kα-mediated and PI3Kß-mediated cancer cell-intrinsic PI3K activity. The role of PI3Kδ in solid tumors is unknown. Here, we evaluated the effects of PI3Kδ using established hepatocellular carcinoma (HCC) cells, malignant hepatocytes derived from patients with advanced HCC, murine models, and HCC tissues using RNA sequencing, quantitative PCR, immunoblotting, immunofluorescence, microarray, liquid chromatography-tandem mass spectrometry, and kinase assay. We established a chemical carcinogenesis model of liver malignancy that reflects the malignant phenotype and the in vivo environment of advanced HCC. In this in vivo advanced HCC-mimic system using HCC cells treated with hydrogen peroxide (H2 O2 ), we showed that H2 O2 selectively increases PI3Kδ activity while decreasing that of other class I PI3Ks. Blocking PI3Kδ activity with a PI3Kδ inhibitor or small interfering RNA-mediated PI3Kδ gene silencing inhibited HCC-cell proliferation and dampened key features of malignant HCC, including the up-regulation of telomerase reverse transcriptase (TERT). Mechanistically, H2 O2 induced oxidative modification of the serpin peptidase inhibitor, serpin peptidase inhibitor (SERPINA3), blocking its ubiquitin-dependent degradation and enhancing its activity as a transcriptional activator of PI3Kδ and TERT. High PI3Kδ levels in HCC were found to correlate with poor survival rates, with human advanced HCC showing positive correlations between the protein levels of oxidized SERPINA3, PI3Kδ, and TERT. Thus, PI3Kδ plays significant roles in malignant liver tumors. Conclusion: Our data identify PI3Kδ inhibition, recently approved for the treatment of human B-cell malignancies, as a potential treatment for HCC.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias Hepáticas/metabolismo , Purinas/uso terapéutico , Quinazolinonas/uso terapéutico , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Peróxido de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Terapia Molecular Dirigida , Purinas/farmacología , Quinazolinonas/farmacología , Serpinas/metabolismo , Telomerasa/metabolismo
3.
Sensors (Basel) ; 15(12): 30683-92, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26690165

RESUMEN

Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction.


Asunto(s)
Gases/química , Microscopía de Fuerza Atómica/métodos , Benceno/química , Ácidos Grasos/química , Péptidos/química , Compuestos de Sulfhidrilo/química
4.
Nanotechnology ; 23(13): 135701, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22417878

RESUMEN

Protein-coated nanoparticles have been used in many studies, including those related to drug delivery, disease diagnosis, therapeutics, and bioassays. The number and density of proteins on the particles' surface are important parameters that need to be calculable in most applications. While quantification methods for two-dimensional surface-bound proteins are commonly found, only a few methods for the quantification of proteins on three-dimensional surfaces such as nanoparticles have been reported. In this paper, we report on a new method of quantifying proteins on nanoparticles using matrix assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). In this method, the nanoparticle-bound proteins are digested by trypsin and the resulting peptide fragments are analyzed by MALDI-TOF MS after the addition of an isotope-labeled internal standard (IS) which has the same sequence as a reference peptide of the surface-bound protein. Comparing the mass intensities between the reference peptide and the IS allows the absolute quantification of proteins on nanoparticles, because they have the same molecular milieu. As a model system, gold nanoparticles were examined using bovine serum albumin (BSA) as a coating protein. We believe that our strategy will be a useful tool that can provide researchers with quantitative information about the proteins on surfaces of three-dimensional materials.


Asunto(s)
Nanopartículas del Metal , Proteínas/análisis , Animales , Bovinos , Oro , Proteínas Inmovilizadas , Nanotecnología , Fragmentos de Péptidos/análisis , Proteolisis , Albúmina Sérica Bovina/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina
5.
Sci Rep ; 5: 9196, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25779765

RESUMEN

Although volatile organic compounds (VOCs) are becoming increasingly recognized as harmful agents and potential biomarkers, selective detection of the organic targets remains a tremendous challenge. Among the materials being investigated for target recognition, peptides are attractive candidates because of their chemical robustness, divergence, and their homology to natural olfactory receptors. Using a combinatorial peptide library and either a graphitic surface or phenyl-terminated self-assembled monolayer as relevant target surfaces, we successfully selected three interesting peptides that differentiate a single carbon deviation among benzene and its analogues. The heterogeneity of the designed target surfaces provided peptides with varying affinity toward targeted molecules and generated a set of selective peptides that complemented each other. Microcantilever sensors conjugated with each peptide quantitated benzene, toluene and xylene to sub-ppm levels in real time. The selection of specific receptors for a group of volatile molecules will provide a strong foundation for general approach to individually monitoring VOCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA