Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 567(7749): 516-520, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30818324

RESUMEN

The nitrogen cycle has been radically changed by human activities1. China consumes nearly one third of the world's nitrogen fertilizers. The excessive application of fertilizers2,3 and increased nitrogen discharge from livestock, domestic and industrial sources have resulted in pervasive water pollution. Quantifying a nitrogen 'boundary'4 in heterogeneous environments is important for the effective management of local water quality. Here we use a combination of water-quality observations and simulated nitrogen discharge from agricultural and other sources to estimate spatial patterns of nitrogen discharge into water bodies across China from 1955 to 2014. We find that the critical surface-water quality standard (1.0 milligrams of nitrogen per litre) was being exceeded in most provinces by the mid-1980s, and that current rates of anthropogenic nitrogen discharge (14.5 ± 3.1 megatonnes of nitrogen per year) to fresh water are about 2.7 times the estimated 'safe' nitrogen discharge threshold (5.2 ± 0.7 megatonnes of nitrogen per year). Current efforts to reduce pollution through wastewater treatment and by improving cropland nitrogen management can partially remedy this situation. Domestic wastewater treatment has helped to reduce net discharge by 0.7 ± 0.1 megatonnes in 2014, but at high monetary and energy costs. Improved cropland nitrogen management could remove another 2.3 ± 0.3 megatonnes of nitrogen per year-about 25 per cent of the excess discharge to fresh water. Successfully restoring a clean water environment in China will further require transformational changes to boost the national nutrient recycling rate from its current average of 36 per cent to about 87 per cent, which is a level typical of traditional Chinese agriculture. Although ambitious, such a high level of nitrogen recycling is technologically achievable at an estimated capital cost of approximately 100 billion US dollars and operating costs of 18-29 billion US dollars per year, and could provide co-benefits such as recycled wastewater for crop irrigation and improved environmental quality and ecosystem services.


Asunto(s)
Agricultura/métodos , Fertilizantes/análisis , Fertilizantes/provisión & distribución , Ciclo del Nitrógeno , Nitrógeno/análisis , Nitrógeno/provisión & distribución , Calidad del Agua/normas , Agricultura/estadística & datos numéricos , Animales , China , Ecosistema , Monitoreo del Ambiente , Abastecimiento de Alimentos/métodos , Abastecimiento de Alimentos/estadística & datos numéricos , Humanos , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis
2.
Environ Sci Technol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329046

RESUMEN

Labile carbon (C) continuously delivered from the rhizosphere profoundly affects terrestrial nitrogen (N) cycling. However, nitrous oxide (N2O) and dinitrogen (N2) production in agricultural soils in the presence of continuous root C exudation with applied N remains poorly understood. We conducted an incubation experiment using artificial roots to continuously deliver small-dose labile C combined with 15N tracers to investigate N2O and N2 emissions in agricultural soils with pH and organic C (SOC) gradients. A significantly negative exponential relationship existed between N2O and N2 emissions under continuous C exudation. Increasing soil pH significantly promoted N2 emissions while reducing N2O emissions. Higher SOC further promoted N2 emissions in alkaline soils. Native soil-N (versus fertilizer-N) was the main source of N2O (average 67%) and N2 (average 80%) emissions across all tested soils. Our study revealed the overlooked high N2 emissions, mainly derived from native soil-N and strengthened by increasing soil pH, under relatively real-world conditions with continuous root C exudation. This highlights the important role of N2O and N2 production from native soil-N in terrestrial N cycling when there is a continuous C supply (e.g., plant-root exudate) and helps mitigate emissions and constrain global budgets of the two concerned nitrogenous gases.

3.
Environ Res ; 241: 117617, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967706

RESUMEN

Digestate is considered as an option for recycling resources and a part of the substitution for chemical fertilizers to reduce environmental impacts. However, its application may lead to significant nitrous oxide (N2O) emissions because of its high concentration of ammonium and degradable carbon. The research objectives are to evaluate how N2O emissions respond to digestate as compared to urea application and whether this depends on soil properties and moisture. Either digestate or urea (100 mg N kg-1) was applied with and without a nitrification inhibitor of 3,4-dimethylpyrazole phosphate (DMPP) to three soil types (fluvo-aquic soil, black soil, and latosol) under three different soil moisture conditions (45, 65, and 85% water-filled pore space (WFPS)) through microcosm incubations. Results showed that digestate- and urea-induced N2O emissions increased exponentially with soil moisture in the three studied soils, and the magnitude of the increase was much greater in the alkaline fluvo-aquic soil, coinciding with high net nitrification rate and transient nitrite accumulation. Compared with urea-amended soils, digestate led to significantly higher peaks in N2O and carbon dioxide (CO2) emissions, which might be due to stimulated rapid oxygen consumption and mineralized N supply. Digestate-induced N2O emissions were all more than one time higher than those induced by urea at the three moisture levels in the three studied soils, except at 85% WFPS in the fluvo-aquic soil. DMPP was more effective at mitigating N2O emissions (inhibitory efficacy: 73%-99%) in wetter digestate-fertilized soils. Overall, our study shows the contrasting effect of digestate to urea on N2O emissions under different soil properties and moisture levels. This is of particular value for determining the optimum of applying digestate under varying soil moisture conditions to minimize stimulated N2O emissions in specific soil properties.


Asunto(s)
Suelo , Urea , Suelo/química , Urea/química , Urea/farmacología , Yoduro de Dimetilfenilpiperazina/farmacología , Óxido Nitroso , Nitrificación , Fertilizantes , Agricultura
4.
J Environ Manage ; 359: 120993, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688131

RESUMEN

The fertilization regimes of combining manure with synthetic fertilizer are benefits for crop yields and soil fertility in cropping systems as compared to sole synthetic fertilization, but the responses of nitrous oxide (N2O) emissions to these practices are inconsistent in the literatures. We hypothesized that it is caused by different proportions of nitrogen (N) applied as manure and various soil properties. Here, we conducted a microcosm experiment, and measured the N2O emissions from control (no N) and five manure substitution treatments (supplied 100 mg N kg-1 using the combination of urea with manure) with a range of proportions of N applied as manure (0, 25%, 50%, 75%, and 100%) in three different soil types (fluvo-aquic soil, black soil, and latosol) under aerobic condition. The stimulated effect on N2O emissions was more pronounced after manure application in an alkaline soil with high nitrification rate, due to relatively rapid soil DOC depletion and N mineralization of manure. N2O emissions from partial substitution of urea with manure were significantly higher than manure-only addition under high soil pH due to abundant labile C from manure. However, there was no difference between manure substitution treatments under acid soils. Nitrification inhibitor substantially decreased N2O emissions with increasing soil pH, but it was less effective in mitigating N2O emissions with larger proportion of manure. This is likely due to the slow nitrification under low soil pH, and denitrification derived N2O increased with increasing manure application rate. Collectively, our study shows that the application of manure substitution to alkaline soils requires careful consideration, which might have rapid nitrification potential and hence trigger significant N2O emissions. The knowledge gained in this work will help the decision-makers in optimizing a sound N fertilization regime interacted with soil properties for sustainable crop production and N2O mitigation.


Asunto(s)
Fertilizantes , Estiércol , Óxido Nitroso , Suelo , Suelo/química , Óxido Nitroso/análisis , Fertilizantes/análisis , Nitrógeno , Nitrificación , Concentración de Iones de Hidrógeno
5.
J Environ Manage ; 355: 120504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447513

RESUMEN

Ammonia-oxidation process directly contribute to soil nitrous oxide (N2O) emissions in agricultural soils. However, taxonomy of the key nitrifiers (within ammonia oxidising bacteria (AOB), archaea (AOA) and complete ammonia oxidisers (comammox Nitrospira)) responsible for substantial N2O emissions in agricultural soils is unknown, as is their regulation by soil biotic and abiotic factors. In this study, cumulative N2O emissions, nitrification rates, abundance and community structure of nitrifiers were investigated in 16 agricultural soils from major crop production regions of China using microcosm experiments with amended nitrogen (N) supplemented or not with a nitrification inhibitor (nitrapyrin). Key nitrifier groups involved in N2O emissions were identified by comparative analyses of the different treatments, combining sequencing and random forest analyses. Soil cumulative N2O emissions significantly increased with soil pH in all agricultural soils. However, they decreased with soil organic carbon (SOC) in alkaline soils. Nitrapyrin significantly inhibited soil cumulative N2O emissions and AOB growth, with a significant inhibition of the AOB Nitrosospira cluster 3a.2 (D11) abundance. One Nitrosospira multiformis-like OTU phylotype (OTU34), which was classified within the AOB Nitrosospira cluster 3a.2 (D11), had the greatest importance on cumulative N2O emissions and its growth significantly depended on soil pH and SOC contents, with higher growth at high pH and low SOC conditions. Collectively, our results demonstrate that alkaline soils with low SOC contents have high N2O emissions, which were mainly driven by AOB Nitrosospira cluster 3a.2 (D11). Nitrapyrin can efficiently reduce nitrification-related N2O emissions by inhibiting the activity of AOB Nitrosospira cluster 3a.2 (D11). This study advances our understanding of key nitrifiers responsible for high N2O emissions in agricultural soils and their controlling factors, and provides vital knowledge for N2O emission mitigation in agricultural ecosystems.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Amoníaco/química , Carbono , Oxidación-Reducción , Archaea , Nitrificación , Microbiología del Suelo
6.
Environ Microbiol ; 25(11): 2636-2640, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37544653

RESUMEN

Nitrification, a key step in soil nitrogen cycling, is a biologically mediated process crucial to the ecological environment. However, how nitrifiers drive nitrification under different soil properties and climatic factors at large spatial scales is poorly understood. Here, using metagenomic sequencing and network-based approaches, we identified key nitrifying species of upland agricultural soils in northern China, which spans a wide range of climates and geographic distances. We found that potential nitrification rates (PNRs) varied in different soils and were positively correlated with soil pH (5.42-8.46) and mean annual temperature (MAT) and negatively correlated with the C/N ratio. Network analysis revealed that one module (module 3) was significantly correlated with PNR. In this module, 16 dominant nodes were associated with AOB Nitrosomonas and most nodes were significantly correlated with environmental factors, suggesting that abiotic conditions are important for determining the assembly of these key nitrifiers. Our study advanced the understanding of the key nitrifying populations and their environmental drivers in upland agricultural soil across different soil and climate types.


Asunto(s)
Nitrificación , Suelo , Suelo/química , Archaea , Oxidación-Reducción , Microbiología del Suelo , Amoníaco , Nitrógeno/química
7.
Glob Chang Biol ; 29(17): 4910-4923, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183810

RESUMEN

Arable soil continues to be the dominant anthropogenic source of nitrous oxide (N2 O) emissions owing to application of nitrogen (N) fertilizers and manures across the world. Using laboratory and in situ studies to elucidate the key factors controlling soil N2 O emissions remains challenging due to the potential importance of multiple complex processes. We examined soil surface N2 O fluxes in an arable soil, combined with in situ high-frequency measurements of soil matrix oxygen (O2 ) and N2 O concentrations, in situ 15 N labeling, and N2 O 15 N site preference (SP). The in situ O2 concentration and further microcosm visualized spatiotemporal distribution of O2 both suggested that O2 dynamics were the proximal determining factor to matrix N2 O concentration and fluxes due to quick O2 depletion after N fertilization. Further SP analysis and in situ 15 N labeling experiment revealed that the main source for N2 O emissions was bacterial denitrification during the hot-wet summer with lower soil O2 concentration, while nitrification or fungal denitrification contributed about 50.0% to total emissions during the cold-dry winter with higher soil O2 concentration. The robust positive correlation between O2 concentration and SP values underpinned that the O2 dynamics were the key factor to differentiate the composite processes of N2 O production in in situ structured soil. Our findings deciphered the complexity of N2 O production processes in real field conditions, and suggest that O2 dynamics rather than stimulation of functional gene abundances play a key role in controlling soil N2 O production processes in undisturbed structure soils. Our results help to develop targeted N2 O mitigation measures and to improve process models for constraining global N2 O budget.


Asunto(s)
Agricultura , Suelo , Suelo/química , Nitrificación , Bacterias , Nitrógeno , Óxido Nitroso/química , Oxígeno
8.
Microb Ecol ; 86(1): 509-520, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35918440

RESUMEN

Denitrifying nitrous oxide (N2O) emissions in agroecosystems result from variations in microbial composition and soil properties. However, the microbial mechanisms of differential N2O emissions in agricultural soils are less understood. In this study, microcosm experiments using two main types of Chinese cropland soil were conducted with different supplements of nitrate and glucose to simulate the varying nitrogen and carbon conditions. The results show that N2O accumulation in black soil (BF) was significantly higher than that in fluvo-aquic soil (FF) independent of nitrogen and carbon. The abundance of most denitrifying genes was significantly higher in FF, but the ratios of genes responsible for N2O production (nirS and nirK) to the gene responsible for N2O reduction (nosZ) did not significantly differ between the two soils. However, the soils showed obvious discrepancies in denitrifying bacterial communities, with a higher abundance of N2O-generating bacteria in BF and a higher abundance of N2O-reducing bacteria in FF. High accumulation of N2O was verified by the bacterial isolates of Rhodanobacter predominated in BF due to a lack of N2O reduction capacity. The dominance of Castellaniella and others in FF led to a rapid reduction in N2O and thus less N2O accumulation, as demonstrated when the corresponding isolate was inoculated into the studied soils. Therefore, the different phenotypes of N2O metabolism of the distinct denitrifiers predominantly colonized the two soils, causing differing N2O accumulation. This knowledge would help to develop a strategy for mitigating N2O emissions in agricultural soils by regulating the phenotypes of N2O metabolism.


Asunto(s)
Óxido Nitroso , Suelo , Desnitrificación , Microbiología del Suelo , Bacterias/genética , Carbono , Nitrógeno , Productos Agrícolas
9.
Glob Chang Biol ; 28(14): 4409-4422, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35429205

RESUMEN

Ammonia (NH3 ) and nitrous oxide (N2 O) are two important air pollutants that have major impacts on climate change and biodiversity losses. Agriculture represents their largest source and effective mitigation measures of individual gases have been well studied. However, the interactions and trade-offs between NH3 and N2 O emissions remain uncertain. Here, we report the results of a two-year field experiment in a wheat-maize rotation in the North China Plain (NCP), a global hotspot of reactive N emissions. Our analysis is supported by a literature synthesis of global croplands, to understand the interactions between NH3 and N2 O emissions and to develop the most effective approaches to jointly mitigate NH3 and N2 O emissions. Field results indicated that deep placement of urea with nitrification inhibitors (NIs) reduced both emissions of NH3 by 67% to 90% and N2 O by 73% to 100%, respectively, in comparison with surface broadcast urea which is the common farmers' practice. But, deep placement of urea, surface broadcast urea with NIs, and application of urea with urease inhibitors probably led to trade-offs between the two gases, with a mitigation potential of -201% to 101% for NH3 and -112% to 89% for N2 O. The literature synthesis showed that deep placement of urea with NIs had an emission factor of 1.53%-4.02% for NH3 and 0.22%-0.36% for N2 O, which were much lower than other fertilization regimes and the default values recommended by IPCC guidelines. This would translate to a reduction of 3.86-5.47 Tg N yr-1 of NH3 and 0.41-0.50 Tg N yr-1 of N2 O emissions, respectively, when adopting deep placement of urea with NIs (relative to current practice) in global croplands. We conclude that the combination of NIs and deep placement of urea can successfully tackle the trade-offs between NH3 and N2 O emissions, therefore avoiding N pollution swapping in global croplands.


Asunto(s)
Fertilizantes , Nitrificación , Agricultura/métodos , Amoníaco/análisis , Productos Agrícolas , Fertilizantes/análisis , Gases , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo , Urea
10.
Glob Chang Biol ; 26(6): 3738-3751, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239592

RESUMEN

Intensive crop production systems worldwide, particularly in China, rely heavily on nitrogen (N) fertilization, but left more than 50% of fertilizer N in the environment. Nitrogen (over) fertilization and atmospheric N deposition induce soil acidification, which is neutralized by soil inorganic carbon (SIC; carbonates), and carbon dioxide (CO2 ) is released to the atmosphere. For the first time, the loss of SIC stocks in response to N-induced soil acidification was estimated for Chinese croplands from 1980 to 2020 and forecasts were made up to 2100. The SIC stocks in croplands in 1980 were 2.16 Pg C (16.3 Mg C/ha) in the upper 40 cm, 7% (0.15 Pg C; 1.1 Mg C/ha) of which were lost from 1980 to 2020. During these 40 years, 7 million ha of cropland has become carbonate free. Another 37% of the SIC stocks may be lost up to 2100 in China, leaving 30 million ha of cropland (37.8%) without carbonates if N fertilization follows the business-as-usual (BAU) scenario. Compared to the BAU scenario, the reduction in N input by 15%-30% after 2020 (scenarios S1 and S2) will decrease carbonate dissolution by 18%-41%. If N input remains constant as noted in 2020 (S3) or decreases by 1% annually (S4), a reduction of up to 52%-67% in carbonate dissolution is expected compared to the BAU scenario. The presence of CaCO3 in the soil is important for various processes including acidity buffering, aggregate formation and stabilization, organic matter stabilization, microbial and enzyme activities, nutrient cycling and availability, and water permeability and plant productivity. Therefore, optimizing N fertilization and improving N-use efficiency are important for decreasing SIC losses from acidification. N application should be strictly calculated based on crop demand, and any overfertilization should be avoided to prevent environmental problems and soil fertility decline associated with CaCO3 losses.


Asunto(s)
Nitrógeno , Suelo , Agricultura , China , Productos Agrícolas , Fertilizantes , Concentración de Iones de Hidrógeno
11.
Environ Sci Technol ; 53(21): 12539-12547, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31596573

RESUMEN

Oxygen (O2) plays a critical and yet poorly understood role in regulating nitrous oxide (N2O) production in well-structured agricultural soils. We investigated the effects of in situ O2 dynamics on N2O production in a typical intensively managed Chinese cropping system under a range of environmental conditions (temperature, moisture, ammonium, nitrate, dissolved organic carbon, and so forth). Climate and management (fertilization, irrigation, precipitation, and temperature), and their interactions significantly affected soil O2 and N2O concentrations (P < 0.05). Soil O2 concentration was the most significant factor correlating with soil N2O concentration (r = -0.71) when compared with temperature, water-filled pore space, and ammonium concentration (r = 0.30, 0.25, and 0.26, respectively). Soil N2O concentration increased exponentially with decreasing soil O2 concentrations. The exponential model of N treatments and fertilization with irrigation/precipitation events predicted 74-90% and 58% of the variance in soil N2O concentrations, respectively. Our results highlight that the soil O2 status is the proximal, direct, and the most decisive environmental trigger for N2O production, outweighing the effects of other factors and could be a key variable integrating the aggregated effects of various complex interacting variables. This study offers new opportunities for developing more sensitive approaches to predicting and through appropriate management interventions mitigating N2O emissions from agricultural soils.


Asunto(s)
Óxido Nitroso , Suelo , Agricultura , Nitratos , Oxígeno
12.
Environ Sci Technol ; 53(12): 6678-6687, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31125212

RESUMEN

Nitrogen (N) surplus is a useful indicator for improving agricultural N management and controlling N pollution. Few studies have developed benchmark values for cropping systems in China, a country with the largest N fertilizer use in the world. We established N surplus benchmarks for 13 main cropping systems, at optimal N management, using results from >4500 on-farm field experiments and a soil surface balance approach. These cropping systems accounted for about 50% of total N fertilizer consumption in Chinese agriculture in 2009. The results showed that N surplus benchmarks for single cropping systems ranged from 40 to 100 kg N ha-1 yr-1 (average 73 kg N ha-1 yr-1), and for double cropping systems from 110 to 190 kg N ha-1 yr-1 (average 160 kg N ha-1 yr-1), roughly twice that of single cropping systems. These N surplus benchmarks may be further refined, following further decreases in N deposition rates and reactive N losses as a result of strict implementation of "4R-nutrient stewardship" and improvements in fertilization techniques and agronomic managements. Our N surplus benchmarks could serve as realistic targets to improve the N management of current conventional practices, and thereby could lay the foundations for a more sustainable N management in China.


Asunto(s)
Benchmarking , Nitrógeno , Agricultura , China , Fertilizantes , Suelo
13.
Environ Sci Technol ; 53(3): 1109-1118, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30620872

RESUMEN

Managing reactive nitrogen (Nr) to achieve a sustainable balance between production of food, feed and fiber, and environmental protection is a grand challenge in the context of an increasingly affluent society. Here, we propose a novel framework for national nitrogen (N) assessments enabling a more consistent comparison of the uses, losses and impacts of Nr between countries, and improvement of Nr management for sustainable development at national and regional scales. This framework includes four key components: national scale N budgets, validation of N fluxes, cost-benefit analysis and Nr management strategies. We identify four critical factors for Nr management to achieve the sustainable development goals: N use efficiency (NUE), Nr recycling ratio (e.g., ratio of livestock excretion applied to cropland), human dietary patterns and food waste ratio. This framework was partly adopted from the European Nitrogen Assessment and now is successfully applied to China, where it contributed to trigger policy interventions toward improvements for future sustainable use of Nr. We demonstrate how other countries can also benefit from the application our framework, in order to include sustainable Nr management under future challenges of growing population, hence contributing to the achievement of some key sustainable development goals (SDGs).


Asunto(s)
Conservación de los Recursos Naturales , Nitrógeno , Animales , China , Alimentos , Humanos , Ganado
14.
Glob Chang Biol ; 24(12): 5590-5606, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118572

RESUMEN

Soil carbon sequestration is being considered as a potential pathway to mitigate climate change. Cropland soils could provide a sink for carbon that can be modified by farming practices; however, they can also act as a source of greenhouse gases (GHG), including not only nitrous oxide (N2 O) and methane (CH4 ), but also the upstream carbon dioxide (CO2 ) emissions associated with agronomic management. These latter emissions are also sometimes termed "hidden" or "embedded" CO2 . In this paper, we estimated the net GHG balance for Chinese cropping systems by considering the balance of soil carbon sequestration, N2 O and CH4 emissions, and the upstream CO2 emissions of agronomic management from a life cycle perspective during 2000-2017. Results showed that although soil organic carbon (SOC) increased by 23.2 ± 8.6 Tg C per year, the soil N2 O and CH4 emissions plus upstream CO2 emissions arising from agronomic management added 269.5 ± 21.1 Tg C-eq per year to the atmosphere. These findings demonstrate that Chinese cropping systems are a net source of GHG emissions and that total GHG emissions are about 12 times larger than carbon uptake by soil sequestration. There were large variations between different cropping systems in the net GHG balance ranging from 328 to 7,567 kg C-eq ha-1  year-1 , but all systems act as a net GHG source to the atmosphere. The main sources of total GHG emissions are nitrogen fertilization (emissions during production and application), power use for irrigation, and soil N2 O and CH4 emissions. Optimizing agronomic management practices, especially fertilization, irrigation, plastic mulching, and crop residues to reduce total GHG emissions from the whole chain is urgently required in order to develop a low-carbon future for Chinese crop production.


Asunto(s)
Secuestro de Carbono , Producción de Cultivos/métodos , Gases de Efecto Invernadero , Suelo/química , Carbono , Dióxido de Carbono/análisis , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis
15.
Environ Sci Technol ; 52(21): 12504-12513, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30351044

RESUMEN

The IPCC assume a linear relationship between nitrogen (N) application rate and nitrous oxide (N2O) emissions in inventory reporting, however, a growing number of studies show a nonlinear relationship under specific soil-climatic conditions. In the North China plain, a global hotspot of N2O emissions, covering a land as large as Germany, the correlation between N rate and N2O emissions remains unclear. We have therefore specifically investigated the N2O response to N applications by conducting field experiments with five N rates, and high-frequency measurements of N2O emissions across contrasting climatic years. Our results showed that cumulative and yield-scaled N2O emissions both increased exponentially as N applications were raised above the optimum rate in maize ( Zea mays L.). In wheat ( Triticum aestivum L.) there was a corresponding quadratic increase in N2O emissions with the magnitude of the response in 2012-2013 distinctly larger than that in 2013-2014 owing to the effects of extreme snowfall. Existing empirical models (including the IPCC approach) of the N2O response to N rate have overestimated N2O emissions in the North China plain, even at high N rates. Our study therefore provides a new and robust analysis of the effects of fertilizer rate and climatic conditions on N2O emissions.


Asunto(s)
Fertilizantes , Óxido Nitroso , Agricultura , China , Alemania , Nitrógeno , Suelo
16.
Proc Natl Acad Sci U S A ; 112(28): 8792-7, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124118

RESUMEN

Reactive nitrogen (Nr) plays a central role in food production, and at the same time it can be an important pollutant with substantial effects on air and water quality, biological diversity, and human health. China now creates far more Nr than any other country. We developed a budget for Nr in China in 1980 and 2010, in which we evaluated the natural and anthropogenic creation of Nr, losses of Nr, and transfers among 14 subsystems within China. Our analyses demonstrated that a tripling of anthropogenic Nr creation was associated with an even more rapid increase in Nr fluxes to the atmosphere and hydrosphere, contributing to intense and increasing threats to human health, the sustainability of croplands, and the environment of China and its environs. Under a business as usual scenario, anthropogenic Nr creation in 2050 would more than double compared with 2010 levels, whereas a scenario that combined reasonable changes in diet, N use efficiency, and N recycling could reduce N losses and anthropogenic Nr creation in 2050 to 52% and 64% of 2010 levels, respectively. Achieving reductions in Nr creation (while simultaneously increasing food production and offsetting imports of animal feed) will require much more in addition to good science, but it is useful to know that there are pathways by which both food security and health/environmental protection could be enhanced simultaneously.


Asunto(s)
Nitrógeno/análisis , China , Conservación de los Recursos Naturales , Historia del Siglo XX , Historia del Siglo XXI
17.
Proc Natl Acad Sci U S A ; 110(21): 8375-80, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23671096

RESUMEN

Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale.


Asunto(s)
Huella de Carbono , Industria Química/métodos , Industria Química/tendencias , Conservación de los Recursos Naturales/métodos , Fertilizantes , Efecto Invernadero/prevención & control , Nitrógeno , Industria Química/economía , Industria Química/legislación & jurisprudencia , China , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias
19.
Nat Commun ; 15(1): 198, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172570

RESUMEN

Global food production faces challenges in balancing the need for increased yields with environmental sustainability. This study presents a six-year field experiment in the North China Plain, demonstrating the benefits of diversifying traditional cereal monoculture (wheat-maize) with cash crops (sweet potato) and legumes (peanut and soybean). The diversified rotations increase equivalent yield by up to 38%, reduce N2O emissions by 39%, and improve the system's greenhouse gas balance by 88%. Furthermore, including legumes in crop rotations stimulates soil microbial activities, increases soil organic carbon stocks by 8%, and enhances soil health (indexed with the selected soil physiochemical and biological properties) by 45%. The large-scale adoption of diversified cropping systems in the North China Plain could increase cereal production by 32% when wheat-maize follows alternative crops in rotation and farmer income by 20% while benefiting the environment. This study provides an example of sustainable food production practices, emphasizing the significance of crop diversification for long-term agricultural resilience and soil health.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Carbono/análisis , Óxido Nitroso/análisis , Agricultura , Productos Agrícolas , Grano Comestible/química , Verduras , Zea mays , Triticum , China , Producción de Cultivos
20.
Sci Total Environ ; 895: 165192, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385503

RESUMEN

The timing and magnitude of greenhouse gas (GHG) production depend strongly on soil oxygen (O2) availability, and the soil pore geometry characteristics largely regulate O2 and moisture conditions relating to GHG biochemical processes. However, the interactions between O2 dynamics and the concentration and flux of GHGs during the soil moisture transitions under various soil pore conditions have not yet been clarified. In this study, a soil-column experiment was conducted under wetting-drying phases using three pore-structure treatments, FINE, MEDIUM, and COARSE, with 0 %, 30 %, and 50 % coarse quartz sand applied to soil, respectively. The concentrations of soil gases (O2, nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4)) were monitored at a depth of 15 cm hourly, and their surface fluxes were measured daily. Soil porosity, pore size distribution, and pore connectivity were quantified using X-ray computed microtomography. The soil O2 concentrations were found to decline sharply as soil moisture increased to the water holding capacities of 0.46, 0.41, and 0.32 cm cm-3 in the FINE, MEDIUM, and COARSE, respectively. The dynamic patterns of the O2 concentrations varied across the soil pore structures, decreasing to anaerobic in FINE (<0.01 %) and MEDIUM (0.02 %), and to hypoxic (4.42 %) in COARSE. Correspondingly, the soil N2O concentration was the highest in FINE (101 µL L-1) and the lowest in COARSE (10 µL L-1), whereas the highest surface N2O flux was observed in MEDIUM (131 µg N m-2 h-1). As soil CO2 concentrations declined, CO2 fluxes increased from FINE to MEDIUM to COARSE. Most pores of FINE, MEDIUM, and COARSE were 15-80 µm, 85-100 µm, and 105-125 µm, respectively, in terms of diameter. The X-ray CT visible (>15 µm) porosity in FINE, MEDIUM and COARSE were 0.09, 0.17, and 0.28 mm3 mm-3, respectively. The corresponding Euler-Poincaré numbers were 180,280, 76,705, and -10,604, respectively, indicating higher connectivity in COARSE than in MEDIUM or FINE. In soil dominated by small air-filled porosity which limits gas diffusion and result in low soil O2 concentration, N2O concentration was increased and CO2 flux was inhibited as the moisture content increased. The turning point in the sharp decrease in O2 concentration was found to correspond with a moisture content, and a pore diameter of 95-110 µm was associated with the critical turning point between holding water and O2 depletion in soil. These findings suggest that O2-regulated biochemical processes are key to the production and flux of GHGs, which in turn are dependent on the soil pore structure and a coupling relationship between N2O and CO2. Improved understanding of the intense effect of soil physical properties provided an empirical foundation for the future development of mechanistic prediction models for how pore-space scale processes with high temporal (hourly) resolution up to GHGs fluxes at larger spatial and temporal scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA