Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(D1): D941-D947, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30371878

RESUMEN

COSMIC, the Catalogue Of Somatic Mutations In Cancer (https://cancer.sanger.ac.uk) is the most detailed and comprehensive resource for exploring the effect of somatic mutations in human cancer. The latest release, COSMIC v86 (August 2018), includes almost 6 million coding mutations across 1.4 million tumour samples, curated from over 26 000 publications. In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic mutations promote cancer, including non-coding mutations, gene fusions, copy-number variants and drug-resistance mutations. COSMIC is primarily hand-curated, ensuring quality, accuracy and descriptive data capture. Building on our manual curation processes, we are introducing new initiatives that allow us to prioritize key genes and diseases, and to react more quickly and comprehensively to new findings in the literature. Alongside improvements to the public website and data-download systems, new functionality in COSMIC-3D allows exploration of mutations within three-dimensional protein structures, their protein structural and functional impacts, and implications for druggability. In parallel with COSMIC's deep and broad variant coverage, the Cancer Gene Census (CGC) describes a curated catalogue of genes driving every form of human cancer. Currently describing 719 genes, the CGC has recently introduced functional descriptions of how each gene drives disease, summarized into the 10 cancer Hallmarks.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Mutación , Neoplasias/genética , Genes , Humanos , Conformación Proteica
2.
Prog Biophys Mol Biol ; 128: 3-13, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27913149

RESUMEN

Many essential biological processes including cell regulation and signalling are mediated through the assembly of protein complexes. Changes to protein-protein interaction (PPI) interfaces can affect the formation of multiprotein complexes, and consequently lead to disruptions in interconnected networks of PPIs within and between cells, further leading to phenotypic changes as functional interactions are created or disrupted. Mutations altering PPIs have been linked to the development of genetic diseases including cancer and rare Mendelian diseases, and to the development of drug resistance. The importance of these protein mutations has led to the development of many resources for understanding and predicting their effects. We propose that a better understanding of how these mutations affect the structure, function, and formation of multiprotein complexes provides novel opportunities for tackling them, including the development of small-molecule drugs targeted specifically to mutated PPIs.


Asunto(s)
Salud , Mutación , Proteínas/genética , Proteínas/metabolismo , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Terapia Molecular Dirigida , Unión Proteica/genética , Proteínas/química
3.
J Mol Biol ; 429(3): 365-371, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27964945

RESUMEN

Interactions between proteins and their ligands, such as small molecules, other proteins, and DNA, depend on specific interatomic interactions that can be classified on the basis of atom type and distance and angle constraints. Visualisation of these interactions provides insights into the nature of molecular recognition events and has practical uses in guiding drug design and understanding the structural and functional impacts of mutations. We present Arpeggio, a web server for calculating interactions within and between proteins and protein, DNA, or small-molecule ligands, including van der Waals', ionic, carbonyl, metal, hydrophobic, and halogen bond contacts, and hydrogen bonds and specific atom-aromatic ring (cation-π, donor-π, halogen-π, and carbon-π) and aromatic ring-aromatic ring (π-π) interactions, within user-submitted macromolecule structures. PyMOL session files can be downloaded, allowing high-quality publication images of the interactions to be generated. Arpeggio is implemented in Python and available as a user-friendly web interface at http://structure.bioc.cam.ac.uk/arpeggio/ and as a downloadable package at https://bitbucket.org/harryjubb/arpeggio.


Asunto(s)
Bases de Datos de Proteínas , Internet , Estructura Terciaria de Proteína , Proteínas/química , Secuencia de Aminoácidos , Clonación Molecular , Análisis de Secuencia de ADN , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA