Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Future Oncol ; 20(10): 579-591, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38060340

RESUMEN

Standard-of-care first-line therapy for patients with newly diagnosed glioblastoma (ndGBM) is maximal safe surgical resection, then concurrent radiotherapy and temozolomide, followed by maintenance temozolomide. IGV-001, the first product of the Goldspire™ platform, is a first-in-class autologous immunotherapeutic product that combines personalized whole tumor-derived cells with an antisense oligonucleotide (IMV-001) in implantable biodiffusion chambers, with the intent to induce a tumor-specific immune response in patients with ndGBM. Here, we describe the design and rationale of a randomized, double-blind, phase IIb trial evaluating IGV-001 compared with placebo, both followed by standard-of-care treatment in patients with ndGBM. The primary end point is progression-free survival, and key secondary end points include overall survival and safety.


Glioblastoma (GBM) is a fast-growing brain tumor that happens in about half of all gliomas. Surgery is the first treatment for patients with newly diagnosed GBM, followed by the usual radiation and chemotherapy pills named temozolomide. Temozolomide pills are then given as a long-term treatment. The outcome for the patient with newly diagnosed GBM remains poor. IGV-001 is specially made for each patient. The tumor cells are removed during surgery and mixed in the laboratory with a small DNA, IMV-001. This mix is the IGV-001 therapy that is designed to give antitumor immunity against GBM. IGV-001 is put into small biodiffusion chambers that are irradiated to stop the growth of any tumor cells in the chambers. In the phase IIb study, patients with newly diagnosed GBM are chosen and assigned to either the IGV-001 or the placebo group. A placebo does not contain any active ingredients. The small biodiffusion chambers containing either IGV-001 or placebo are surgically placed into the belly for 48 to 52 h and then removed. Patients then receive the usual radiation and chemotherapy treatment. Patients must be adults aged between 18 and 70 years. Patients also should be able to care for themselves overall, but may be unable to work or have lower ability to function. Patients with tumors on both sides of the brain are not eligible. The main point of this study is to see if IGV-001 helps patients live longer without making the illness worse compared with placebo. Clinical Trial Registration: NCT04485949 (ClinicalTrials.gov).


Asunto(s)
Neoplasias Encefálicas , Combinación de Medicamentos , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Temozolomida/uso terapéutico , Oligonucleótidos Antisentido/uso terapéutico , Supervivencia sin Enfermedad , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Inmunoterapia , Antineoplásicos Alquilantes/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Neurosurg Focus ; 54(6): E17, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37552657

RESUMEN

OBJECTIVE: The clinical behavior of meningiomas is not entirely captured by its designated WHO grade, therefore other factors must be elucidated that portend increased tumor aggressiveness and associated risk of recurrence. In this study, the authors identify multiparametric MRI radiomic signatures of meningiomas using Ki-67 as a prognostic marker of clinical outcomes independent of WHO grade. METHODS: A retrospective analysis was conducted of all resected meningiomas between 2012 and 2018. Preoperative MR images were used for high-throughput radiomic feature extraction and subsequently used to develop a machine learning algorithm to stratify meningiomas based on Ki-67 indices < 5% and ≥ 5%, independent of WHO grade. Progression-free survival (PFS) was assessed based on machine learning prediction of Ki-67 strata and compared with outcomes based on histopathological Ki-67. RESULTS: Three hundred forty-three meningiomas were included: 291 with WHO grade I, 43 with grade II, and 9 with grade III. The overall rate of recurrence was 19.8% (15.1% in grade I, 44.2% in grade II, and 77.8% in grade III) over a median follow-up of 28.5 months. Grade II and III tumors had higher Ki-67 indices than grade I tumors, albeit tumor and peritumoral edema volumes had considerable variation independent of meningioma WHO grade. Forty-six high-performing radiomic features (1 morphological, 7 intensity-based, and 38 textural) were identified and used to build a support vector machine model to stratify tumors based on a Ki-67 cutoff of 5%, with resultant areas under the curve of 0.83 (95% CI 0.78-0.89) and 0.84 (95% CI 0.75-0.94) achieved for the discovery (n = 257) and validation (n = 86) data sets, respectively. Comparison of histopathological Ki-67 versus machine learning-predicted Ki-67 showed excellent performance (overall accuracy > 80%), with classification of grade I meningiomas exhibiting the greatest accuracy. Prediction of Ki-67 by machine learning classifier revealed shorter PFS for meningiomas with Ki-67 indices ≥ 5% compared with tumors with Ki-67 < 5% (p < 0.0001, log-rank test), which corroborates divergent patient outcomes observed using histopathological Ki-67. CONCLUSIONS: The Ki-67 proliferation index may serve as a surrogate marker of increased meningioma aggressiveness independent of WHO grade. Machine learning using radiomic feature analysis may be used for the preoperative prediction of meningioma Ki-67, which provides enhanced analytical insights to help improve diagnostic classification and guide patient-specific treatment strategies.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Antígeno Ki-67 , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Estudios Retrospectivos , Pronóstico , Proliferación Celular
3.
Acta Neurochir (Wien) ; 165(12): 4175-4182, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987849

RESUMEN

PURPOSE: Owing to their vicinity near the superior sagittal sinus, parasagittal and parafalcine meningiomas are challenging tumors to surgically resect. In this study, we investigate key factors that portend increased risk of recurrence after surgery. METHODS: This is a retrospective study of patients who underwent resection of parasagittal and parafalcine meningiomas at our institution between 2012 and 2018. Relevant clinical, radiographic, and histopathological variables were selected for analysis as predictors of tumor recurrence. RESULTS: A total of 110 consecutive subjects (mean age: 59.4 ± 15.2 years, 67.3% female) with 74 parasagittal and 36 parafalcine meningiomas (92 WHO grade 1, 18 WHO grade 2/3), are included in the study. A total of 37 patients (33.6%) exhibited recurrence with median follow-up of 42 months (IQR: 10-71). In the overall cohort, parasagittal meningiomas exhibited shorter progression-free survival compared to parafalcine meningiomas (Kaplan-Meier log-rank p = 0.045). On univariate analysis, predictors of recurrence include WHO grade 2/3 vs. grade 1 tumors (p < 0.001), higher Ki-67 indices (p < 0.001), partial (p = 0.04) or complete sinus invasion (p < 0.001), and subtotal resection (p < 0.001). Multivariable Cox regression analysis revealed high-grade meningiomas (HR: 3.62, 95% CI: 1.60-8.22; p = 0.002), complete sinus invasion (HR: 3.00, 95% CI: 1.16-7.79; p = 0.024), and subtotal resection (HR: 3.10, 95% CI: 1.38-6.96; p = 0.006) as independent factors that portend shorter time to recurrence. CONCLUSION: This study identifies several pertinent factors that confer increased risk of recurrence after resection of parasagittal and parafalcine meningiomas, which can be used to devise appropriate surgical strategy to achieve improved patient outcomes.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Masculino , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Estudios Retrospectivos , Recurrencia Local de Neoplasia/cirugía , Recurrencia Local de Neoplasia/patología , Seno Sagital Superior/cirugía
4.
J Neurooncol ; 160(2): 345-350, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36355259

RESUMEN

Current standard of care for glioblastoma (GBM) includes concurrent chemoradiation and maintenance temozolomide (TMZ) with Tumor Treating Fields (TTFields). Preclinical studies suggest TTFields and radiation treatment have synergistic effects. We conducted a pilot clinical trial of concurrent chemoradiation with TTFields and report pattern of progression. MATERIALS AND METHODS: This is a single arm pilot study (clinicaltrials.gov Identifier: NCT03477110). Adult patients (age ≥ 18 years) with KPS ≥ 60 with newly diagnosed GBM were eligible. All patients received concurrent scalp-sparing radiation (60 Gy in 30 fractions), standard concurrent TMZ and TTFields. Maintenance therapy included standard TMZ and continuation of TTFields. Radiation treatment was delivered through TTFields arrays. Incidence and location of progression was documented. Distant recurrence was defined as recurrence more than 2 cm from the primary enhancing lesion. RESULTS: Thirty patients were enrolled on the trial. Twenty were male with median age 58 years (19-77 years). Median KPS was 90 (70-100). Median follow-up was 15.2 months (1.7-23.6 months). Ten (33.3%) patients had a methylated promoter status. Twenty-seven patients (90%) had progression, with median PFS of 9.3 months (range 8.5 to 11.6 months). Six patients presented with distant recurrence, with median distance from primary lesion of 5.05 cm (2.26-6.95 cm). One infratentorial progression was noted. CONCLUSIONS: We observed improved local control using concurrent chemoradiation with TTFields for patients with newly diagnosed when compared to historical controls. Further data are needed to validate this finding. TRIAL REGISTRATION: Clinicaltrials.gov Identifier NCT03477110.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Terapia Combinada , Glioblastoma/tratamiento farmacológico , Proyectos Piloto , Temozolomida/uso terapéutico , Adulto Joven , Anciano
5.
J Neurooncol ; 152(1): 145-151, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33420897

RESUMEN

INTRODUCTION: Despite optimal surgical resection, meningiomas may recur, with increasing grade and the degree of resection being predictive of risk. We hypothesize that an increasing Ki67 correlates with a higher risk of recurrence of resected WHO grade I meningiomas. METHODS: The study population consisted of patients with resected WHO grade 1 meningiomas in locations outside of the base of skull. Digitally scanned slides stained for Ki67 were analyzed using automatic image analysis software in a standardized fashion. RESULTS: Recurrence was observed in 53 (17.7%) of cases with a median follow up time of 25.8 months. Ki67 ranged from 0 to 30%. Median Ki67 was 5.1% for patients with recurrence and 3.5% for patients without recurrence. In unadjusted analyses, high Ki-67 (≥ 5 vs. < 5) vs. ≥ 5) was associated with over a twofold increased risk of recurrence (13.1% vs. 27% respectively; HR 2.1731; 95% CI [1.2534, 3.764]; p = 0.006). After Adjusting for patient or tumor characteristics, elevated Ki-67 remained significantly correlated with recurrence. Grade 4 Simpson resection was noted in 71 (23.7%) of patients and it was associated with a significantly increased risk of recurrence (HR 2.56; 95% CI [1.41, 4.6364]; p = 0.002). CONCLUSIONS: WHO grade 1 meningiomas exhibit a significant rate of recurrence following resection. While Ki-67 is not part of the WHO grading criteria of meningiomas, a value greater than 5% is an independent predictor for increased risk of local recurrence following surgical resection.


Asunto(s)
Neoplasias Meníngeas/patología , Meningioma/patología , Índice Mitótico , Recurrencia Local de Neoplasia/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Femenino , Humanos , Antígeno Ki-67/análisis , Masculino , Neoplasias Meníngeas/cirugía , Meningioma/cirugía , Persona de Mediana Edad , Clasificación del Tumor , Estudios Retrospectivos , Organización Mundial de la Salud
6.
J Neurooncol ; 147(3): 653-661, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32206976

RESUMEN

INTRODUCTION: Standard of care for glioblastoma includes concurrent chemoradiation and maintenance temozolomide with tumor treatment fields (TTFields). Preclinical studies suggest TTFields and radiation treatment have synergistic effects. We report our initial experience evaluating toxicity and tolerability of scalp-sparing radiation with concurrent TTFields. METHODS: This is a single arm pilot study (clinicaltrials.gov Identifier: NCT03477110). Adult patients (age ≥ 18 years) with KPS ≥ 60 with newly diagnosed glioblastoma were eligible. All patients received concurrent scalp-sparing radiation (60 Gy in 30 fractions), standard concurrent temozolomide (75 mg/m2 daily), and TTFields. Maintenance therapy included standard temozolomide and continuation of TTFields. Radiation treatment was delivered through TTFields arrays. The primary endpoint was safety and toxicity for concurrent TTFields with chemoradiation in newly diagnosed glioblastoma. RESULTS: We report the first ten patients on the trial. Eight were male, and two were female, with median age 61 years (range 49 to 73 years). Median KPS was 90 (range 70-90). Median follow-up was 7.9 months (2.8 to 17.9 months). Nine (90%) patients with unmethylated MGMT promotor, and one with methylated. Median time from surgery to radiation was 33 days (28 to 49 days). All patients completed concurrent chemoradiation plus TTFields without radiation or TTFields treatment interruption or discontinuation. Scalp dose constraints were achieved for all patients, with mean dose having a median value of 7.7 Gy (range 4.9 to 13.2 Gy), D20cc median 22.6 Gy (17.7 to 36.8 Gy), and D30cc median 19.8 Gy (14.8 to 33.4 Gy). Average daily use during concurrent phase had median value of 83.5% and 77% for maintenance. There was no related ≥ Grade 3 toxicity. Skin toxicity (erythema, dermatitis, pruritus) was noted in 80% of patients, however, these were limited to Grade 1 or 2 events which resolved spontaneously or responded to topical medications. Eight patients (80%) had progression, with median PFS of 6.9 months (range 2.8 to 9.6 months). CONCLUSIONS: Concurrent TTFields with scalp-sparing chemoradiation is a safe and feasible treatment option with limited toxicity. Future randomized prospective trial is warranted to define therapeutic advantages of concurrent TTFields with chemoradiation. TRIAL REGISTRATION: Clinicaltrials.gov Identifier NCT03477110.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/terapia , Quimioradioterapia/métodos , Glioblastoma/terapia , Temozolomida/uso terapéutico , Anciano , Neoplasias Encefálicas/tratamiento farmacológico , Quimioradioterapia/efectos adversos , Terapia Combinada , Femenino , Glioblastoma/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Cuero Cabelludo/efectos de la radiación , Resultado del Tratamiento
7.
Int J Hyperthermia ; 37(1): 1189-1201, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33047639

RESUMEN

AIM: Hyperthermia (HT) has been shown to improve clinical response to radiation therapy (RT) for cancer. Synergism is dramatically enhanced if HT and RT are combined simultaneously, but appropriate technology to apply treatments together does not exist. This study investigates the feasibility of delivering HT with RT to a 5-10mm annular rim of at-risk tissue around a tumor resection cavity using a temporary thermobrachytherapy (TBT) balloon implant. METHODS: A balloon catheter was designed to deliver radiation from High Dose Rate (HDR) brachytherapy concurrent with HT delivered by filling the balloon with magnetic nanoparticles (MNP) and immersing it in a radiofrequency magnetic field. Temperature distributions in brain around the TBT balloon were simulated with temperature dependent brain blood perfusion using numerical modeling. A magnetic induction system was constructed and used to produce rapid heating (>0.2°C/s) of MNP-filled balloons in brain tissue-equivalent phantoms by absorbing 0.5 W/ml from a 5.7 kA/m field at 133 kHz. RESULTS: Simulated treatment plans demonstrate the ability to heat at-risk tissue around a brain tumor resection cavity between 40-48°C for 2-5cm diameter balloons. Experimental thermal dosimetry verifies the expected rapid and spherically symmetric heating of brain phantom around the MNP-filled balloon at a magnetic field strength that has proven safe in previous clinical studies. CONCLUSIONS: These preclinical results demonstrate the feasibility of using a TBT balloon to deliver heat simultaneously with HDR brachytherapy to tumor bed around a brain tumor resection cavity, with significantly improved uniformity of heating over previous multi-catheter interstitial approaches. Considered along with results of previous clinical thermobrachytherapy trials, this new capability is expected to improve both survival and quality of life in patients with glioblastoma multiforme.


Asunto(s)
Braquiterapia , Neoplasias Encefálicas , Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias Encefálicas/radioterapia , Estudios de Factibilidad , Calefacción , Humanos , Calidad de Vida
8.
J Neurooncol ; 137(1): 171-177, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29235052

RESUMEN

Bevacizumab failure is a major clinical problem in the management of high grade gliomas (HGG), with a median overall survival (OS) of < 4 months. This study evaluated the feasibility and efficacy of fractionated stereotactic re-irradiation (FSRT) for patients progressed after Bevacizumab treatment. Retrospective review was conducted of 36 patients treated with FSRT after progression on bevacizumab. FSRT was most commonly delivered in 3.5 Gy fractions to a total dose of 35 Gy. Survival from initial diagnosis, as well as from recurrence and re-irradiation, were utilized as study endpoints. Univariate and multivariate analysis was performed. The median time from initial bevacizumab treatment to FSRT was 8.5 months. The median plan target volume for FSRT was 27.5 cc. The median OS from FSRT was 4.8 months. FSRT treatment was well tolerated with no grade 3 or higher toxicity. Favorable outcomes were observed in patients with recurrent HGG who received salvage FSRT after bevacizumab failure. The treatment was well tolerated. Prospective study is warranted to further evaluate the efficacy of salvage FSRT for selected patients with recurrent HGG amenable to FSRT, who had failed bevacizumab treatment.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias Encefálicas/radioterapia , Fraccionamiento de la Dosis de Radiación , Glioma/radioterapia , Recurrencia Local de Neoplasia/radioterapia , Terapia Recuperativa/métodos , Adulto , Anciano , Neoplasias Encefálicas/tratamiento farmacológico , Progresión de la Enfermedad , Femenino , Glioma/tratamiento farmacológico , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Estudios Retrospectivos , Insuficiencia del Tratamiento , Resultado del Tratamiento
10.
J Neurooncol ; 127(3): 535-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26821711

RESUMEN

Panobinostat is an oral HDAC inhibitor with radiosensitizing activity. We investigated the safety, tolerability and preliminary efficacy of panobinostat combined with fractionated stereotactic re-irradiation therapy (FSRT) for recurrent high grade gliomas. Patients with recurrent high grade gliomas were enrolled in a 3 + 3 dose escalation study to determine dose limiting toxicities (DLTs), maximum tolerated dose (MTD), safety, tolerability, and preliminary efficacy. FSRT was prescribed to 30-35 Gy delivered in 10 fractions. Panobinostat was administrated concurrently with radiotherapy. Of 12 evaluable patients, 8 had recurrent GBM, and 4 had recurrent anaplastic astrocytoma. There were three grade 3 or higher toxicities in each the 10 and 30 mg cohorts. In the 30 mg cohort, there was one DLT; grade 4 neutropenia. One patient developed late grade 3 radionecrosis. The median follow up was 18.8 months. The PFS6 was 67, 33, and 83 % for 10, 20, and 30 mg cohorts, respectively. The median OS was 7.8, 6.1 and 16.1 months for the 10, 20 and 30 mg cohorts, respectively. Panobinostat administrated with FSRT is well tolerated at 30 mg. A phase II trial is warranted to assess the efficacy of panobinostat plus FSRT for recurrent glioma.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Ácidos Hidroxámicos/uso terapéutico , Indoles/uso terapéutico , Recurrencia Local de Neoplasia/terapia , Radiocirugia , Reirradiación , Adulto , Anciano , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/patología , Terapia Combinada , Fraccionamiento de la Dosis de Radiación , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Panobinostat , Pronóstico , Tasa de Supervivencia
11.
J Neurooncol ; 123(2): 259-66, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25947286

RESUMEN

Temozolomide (TMZ) and BCNU have demonstrated anti-glioma synergism in preclinical models. We report final data from a prospective, multi-institutional study of BCNU wafers and early TMZ followed by radiation therapy with TMZ in patients with newly diagnosed malignant glioma. 65 patients were consented in 4 institutions, and 46 patients (43 GBM, 3 AA) were eligible for analysis. After resection and BCNU wafer placement, TMZ began on day four postoperatively. Radiation and TMZ (RT/TMZ) were then administered, followed by monthly TMZ at 200 mg/m2 for the first 26 patients, which was reduced to 150 mg/m2 for the remaining 20 patients. Non-hematologic toxicities were minimal. Nine of 27 patients (33 %) who received 200 mg/m2 TMZ, but only 1 of 20 (5 %) who received 150 mg/m2, experienced grade 3/4 thrombocytopenia. Median progression free survival (PFS) and overall survival (OS) period was 8.5 and 18 months, respectively. The 1-year OS rate was 76 %, which is a significant improvement compared with the historical control 1-year OS rate of 59 % (p = 0.023). However, there was no difference in 1-year OS compared with standard RT/TMZ (p = 0.12) or BCNU wafer followed by RT/TMZ (p = 0.87) in post hoc analyses. Early post-operative TMZ can be safely administered with BCNU wafers following resection of malignant glioma at the 150 mg/m2 dose level. Although there was an OS benefit compared to historical control, there was no indication of benefit for BCNU wafers and early TMZ in addition to standard RT/TMZ or early TMZ in addition to regimens of BCNU wafers followed by RT/TMZ.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Glioma/mortalidad , Glioma/terapia , Adulto , Anciano , Neoplasias Encefálicas/patología , Carmustina/administración & dosificación , Terapia Combinada , Dacarbazina/administración & dosificación , Dacarbazina/análogos & derivados , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Periodo Posoperatorio , Pronóstico , Estudios Prospectivos , Dosificación Radioterapéutica , Tasa de Supervivencia , Temozolomida
12.
J Neurooncol ; 118(2): 313-319, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24728831

RESUMEN

Perform a phase I study to evaluate the safety, and tolerability of vorinostat, an HDAC inhibitor, when combined with whole brain radiation treatment (WBRT) in patients with brain metastasis. A multi-institutional phase I clinical trial enrolled patients with a histological diagnosis of malignancy and radiographic evidence of brain metastasis. WBRT was 37.5 Gy in 2.5 Gy fractions delivered over 3 weeks. Vorinostat was administrated by mouth, once daily, Monday through Friday, concurrently with radiation treatment. The vorinostat dose was escalated from 200 to 400 mg daily using a 3+3 trial design. Seventeen patients were enrolled, 4 patients were excluded from the analysis due to either incorrect radiation dose (n = 1), or early treatment termination due to disease progression (n = 3). There were no treatment related grade 3 or higher toxicities in the 200 and 300 mg dose levels. In the 400 mg cohort there was a grade 3 pulmonary embolus and one death within 30 days of treatment. Both events were most likely related to disease progression rather than treatment; nonetheless, we conservatively classified the death as a dose limiting toxicity. We found Vorinostat administered with concurrent WBRT to be well tolerated to a dose of 300 mg once daily. This is the recommended dose for phase II study.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Quimioradioterapia , Ácidos Hidroxámicos/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Anciano , Neoplasias Encefálicas/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Progresión de la Enfermedad , Neoplasias de las Trompas Uterinas/patología , Femenino , Inhibidores de Histona Desacetilasas/efectos adversos , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Ácidos Hidroxámicos/efectos adversos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Fármacos Sensibilizantes a Radiaciones/efectos adversos , Resultado del Tratamiento , Vorinostat
13.
J Clin Neurosci ; 127: 110754, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068727

RESUMEN

PURPOSE: Glioblastoma (GBM) is the most common primary brain cancer in adults with a very poor prognosis. Metabolic drivers of tumorigenesis are highly relevant within the central nervous system, where glucose is the critical source of energy. The impact of obesity on survival outcomes in patients with GBM is not well established. This study investigates the prognostic value of body mass index (BMI) in patients diagnosed with GBM. METHODS: Adult patients with newly diagnosed GBM treated at Thomas Jefferson University Hospital between January 1, 2008, and December 31, 2022, were included in the study. BMI was calculated using the formula BMI = kg/m2. Patients BMI groups were underweight (BMI < 19.00), normal weight (BMI 19.00-24.99), overweight (BMI 25-29.99), and obese (BMI > 30.00). All patients received 60 Gy of radiation therapy with concurrent and adjuvant temozolomide following maximal safe resection. A difference in clinical outcomes of overall survival (OS) and progression-free survival (PFS) were evaluated between the groups using Kaplan-Meier and log-rank tests. RESULTS: A total of 392 patients met inclusion criteria. The median age was 60.3 (range 18.9-86.7), with 144 females and 248 males. Median BMI was 27.0 (Range; 17.7-52.9). Non-overweight GBM patients (BMI < 25.00, OS 2.1 years, CI 1.7-2.4 years) had increased overall survival compared to overweight patients (BMI ≥ 25.00, OS 1.5 years, CI 1.4-1.6 years) (p < 0.001). Patients with MGMT-methylated GBM also had significantly greater OS and PFS compared to MGMT-unmethylated patients (p < 0.001). Non-overweight GBM patients (BMI < 25.00, median PFS 1.5 years, CI 1.3-2.0 years) also had increased progression-free survival compared to overweight patients (BMI ≥ 25.00, median PFS 1.1 years, CI 0.9-1.2 years) (p < 0.001). CONCLUSIONS: Our study indicates normal BMI (19.00-24.99) at the time of GBM diagnosis is a favorable prognostic indicator for overall and progression-free survival. Additional studies are warranted for further analysis of BMI and survival outcomes in GBM patients.


Asunto(s)
Índice de Masa Corporal , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/mortalidad , Glioblastoma/terapia , Glioblastoma/diagnóstico , Glioblastoma/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico , Adulto , Estudios Retrospectivos , Pronóstico , Anciano , Adulto Joven , Adolescente , Obesidad/complicaciones , Anciano de 80 o más Años , Temozolomida/uso terapéutico , Supervivencia sin Progresión , Sobrepeso/complicaciones , Antineoplásicos Alquilantes/uso terapéutico
14.
J Med Case Rep ; 17(1): 102, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36935497

RESUMEN

BACKGROUND: Hemangioblastoma of the central nervous system is an uncommon benign neoplasm, with about 25% of cases in patients with von Hippel-Lindau disease. The incidence of metastasis is rare, particularly in patients without von Hippel-Lindau disease. We report a case of hemangioblastoma with leptomeningeal dissemination as a late recurrence. CASE PRESENTATION: A 65-year-old Caucasian man with a history of World Health Organization grade I hemangioblastoma of the cerebellar vermis underwent gross total resection in 1997. In early 2018, he developed intracranial recurrences with diffuse leptomeningeal disease of the entire spine. The patient underwent resection of intracranial recurrence, followed by palliative craniospinal irradiation. The disease progressed quickly, and he died 8 months after recurrence. CONCLUSIONS: Despite a benign pathology, hemangioblastoma has a low risk of metastasis. The outcome for hemangioblastoma patients with metastasis is poor. Multidisciplinary care for patients with metastatic hemangioblastoma warrants further investigation, and an effective systemic option is urgently needed. Regular lifelong follow-up of at-risk patients is recommended.


Asunto(s)
Neoplasias Cerebelosas , Hemangioblastoma , Enfermedad de von Hippel-Lindau , Masculino , Humanos , Anciano , Hemangioblastoma/cirugía , Neoplasias Cerebelosas/cirugía , Columna Vertebral
15.
Cancers (Basel) ; 15(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067387

RESUMEN

Previous work has reported the design of a novel thermobrachytherapy (TBT) balloon implant to deliver magnetic nanoparticle (MNP) hyperthermia and high-dose-rate (HDR) brachytherapy simultaneously after brain tumor resection, thereby maximizing their synergistic effect. This paper presents an evaluation of the robustness of the balloon device, compatibility of its heat and radiation delivery components, as well as thermal and radiation dosimetry of the TBT balloon. TBT balloon devices with 1 and 3 cm diameter were evaluated when placed in an external magnetic field with a maximal strength of 8.1 kA/m at 133 kHz. The MNP solution (nanofluid) in the balloon absorbs energy, thereby generating heat, while an HDR source travels to the center of the balloon via a catheter to deliver the radiation dose. A 3D-printed human skull model was filled with brain-tissue-equivalent gel for in-phantom heating and radiation measurements around four 3 cm balloons. For the in vivo experiments, a 1 cm diameter balloon was surgically implanted in the brains of three living pigs (40-50 kg). The durability and robustness of TBT balloon implants, as well as the compatibility of their heat and radiation delivery components, were demonstrated in laboratory studies. The presence of the nanofluid, magnetic field, and heating up to 77 °C did not affect the radiation dose significantly. Thermal mapping and 2D infrared images demonstrated spherically symmetric heating in phantom as well as in brain tissue. In vivo pig experiments showed the ability to heat well-perfused brain tissue to hyperthermic levels (≥40 °C) at a 5 mm distance from the 60 °C balloon surface.

16.
J Neurosurg Case Lessons ; 4(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471578

RESUMEN

BACKGROUND: Anaplastic meningioma are rare, cancerous tumors of the central nervous system that often require multimodal therapy for tumor control. Both laser interstitial thermal therapy (LITT) and brachytherapy with implanted cesium-131 metallic seeds have demonstrated efficacy in the treatment of recurrent and resistant anaplastic meningioma; however, their safety as a dual therapy has never been reported. OBSERVATIONS: In this report, the authors present a case of a 53-year-old female who received LITT in combination with brachytherapy after surgical and radiation treatment options had been exhausted. The authors discuss the unique safety concern of thermal injury with this treatment combination and demonstrate their method for the safe administration of these treatments together. Furthermore, the authors provide a review of the literature on LITT as an emerging therapy for anaplastic meningioma. LESSONS: The use of LITT in combination with brachytherapy remains an option for salvage therapy in patients with recurrent meningioma that provides durable local control of tumor.

17.
Radiol Case Rep ; 17(12): 4899-4902, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36281285

RESUMEN

Ventriculoperitoneal (VP) shunts represent a surgical option for patients affected by increased intracranial hypertension when medical management fails or is contraindicated. Complications following implantation include shunt obstruction, infection, over and under drainage, migration or disconnection of the tube, formation of a pseudocyst, and allergy to the silicone tube. We report the case of a 31-year-old woman who presented to the emergency room with nausea and generalized malaise, found to have the distal segment of the VP catheter perforating her gastric wall into the stomach lumen which required surgical intervention. In this report, we describe a rare complication associated with the implantation of ventriculoperitoneal shunt (VPS) catheters and the subsequent management plan.

18.
Front Oncol ; 12: 896246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574391

RESUMEN

Introduction: Standard-of-care treatment for patients with newly diagnosed glioblastoma (GBM) after surgery or biopsy includes concurrent chemoradiation followed by maintenance temozolomide (TMZ) with tumor treating fields (TTFields). Preclinical studies suggest TTFields and radiotherapy work synergistically. We report the results of our trial evaluating the safety of TTFields used concurrently with chemoradiation. Methods: This is a single-arm pilot study (clinicaltrials.gov Identifier: NCT03477110). Adult patients (age ≥ 18 years) with newly diagnosed glioblastoma and a Karnofsky performance score (KPS) of ≥ 60 were eligible. All patients received concurrent scalp-sparing radiation (60 Gy in 30 fractions) with TMZ (75 mg/m2 daily) and TTFields (200 kHz). Maintenance therapy included TMZ and continuation of TTFields. Scalp-sparing radiation treatment was used to reduce radiation dermatitis. Radiation treatment was delivered through the TTFields arrays. The primary endpoint was safety and toxicity of tri-modality treatment within 30 days of completion of chemoradiation treatment. Results: There were 30 patients enrolled, including 20 (66.7%) men and 10 (33.3%) women, with a median age of 58 years (range 19 to 77 years). Median KPS was 90 (range 70 to 100). A total of 12 (40%) patients received a gross total resection and 18 (60%) patients had a subtotal resection. A total of 12 (40%) patients had multifocal disease at presentation. There were 20 (66.7%) patients who had unmethylated O(6)-methylguanine-DNA-methyltransferase (MGMT) promotor status and 10 (33.3%) patients who had methylated MGMT promoter status. Median follow-up was 15.2 months (range 1.7 to 23.6 months). Skin adverse events were noted in 83.3% of patients, however, these were limited to Grade 1 or 2 events, which resolved spontaneously or with topical medications. The primary end point was met; no TTFields discontinuation occurred during the evaluation period due to high grade scalp toxicity. A total of 27 (90%) patients had progression, with a median progression-free survival (PFS) of 9.3 months (95% confidence interval (CI): 8.5-11.6 months). The 1-year progression-free survival was 23% (95% CI: 12%-45%). The median overall survival (OS) was 15.8 months (95% CI: 12.5 months-infinity). The 1-year overall survival was 66% (95% CI: 51%-86%). Conclusions: Concurrent TTFields with scalp-sparing chemoradiation is a feasible and well-tolerated treatment option with limited toxicity. A phase 3, randomized clinical trial (EF-32, clinicaltrials.gov Identifier: NCT04471844) investigating the clinical benefit of concurrent TTFields with chemoradiation treatment is currently enrolling. Clinical Trial Registration: Clinicaltrials.gov, identifier NCT03477110.

19.
J Clin Neurosci ; 93: 82-87, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34656266

RESUMEN

Glioblastoma (GBM) with deep-supratentorial extension (DSE) involving the thalamus, basal ganglia and corpus collosum, poses significant challenges for clinical management. In this study, we present our outcomes in patients who underwent resection of supratentorial GBM with associated involvement of deep brain structures. We conducted a retrospective review of patients who underwent resection of GBM at our institution between 2012 and 2018. A total of 419 patients were included whose pre-operative MRI scans were reviewed. Of these, 143 (34.1%) had GBM with DSE. There were similar rates of IDH-1 mutation (9% versus 7.6%, p = 0.940) and MGMT methylation status (35.7% versus 45.2%, p = 0.397) between the two cohorts. GBM patients without evidence of DSE had higher rates of radiographic gross total resection (GTR) compared to those with DSE: 70.6% versus 53.1%, respectively (p = 0.002). The presence of DSE was not associated with decreased progression-free survival (PFS) compared to patients without DSE (mean 7.24 ± 0.97 versus 8.89 ± 0.76 months, respectively; p = 0.276), but did portend a worse overall survival (OS) (mean 10.55 ± 1.04 versus 15.02 ± 1.05 months, respectively; p = 0.003). There was no difference in PFS or OS amongst DSE and non-DSE patients who underwent GTR, but patients who harbored DSE and underwent subtotal resection had worse OS (mean 8.26 ± 1.93 versus 12.96 ± 1.59 months, p = 0.03). Our study shows that GBM patients with DSE have lower OS compared to those without DSE. This survival difference appears to be primarily related to the limited surgical extent of resection owing to the neurological deficits that may be incurred with involvement of eloquent deep brain structures.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Supratentoriales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Humanos , Pronóstico , Supervivencia sin Progresión , Estudios Retrospectivos , Neoplasias Supratentoriales/diagnóstico por imagen , Neoplasias Supratentoriales/cirugía
20.
Neurosurgery ; 89(5): 928-936, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34460921

RESUMEN

BACKGROUND: Although World Health Organization (WHO) grade I meningiomas are considered "benign" tumors, an elevated Ki-67 is one crucial factor that has been shown to influence tumor behavior and clinical outcomes. The ability to preoperatively discern Ki-67 would confer the ability to guide surgical strategy. OBJECTIVE: In this study, we develop a machine learning (ML) algorithm using radiomic feature analysis to predict Ki-67 in WHO grade I meningiomas. METHODS: A retrospective analysis was performed for a cohort of 306 patients who underwent surgical resection of WHO grade I meningiomas. Preoperative magnetic resonance imaging was used to perform radiomic feature extraction followed by ML modeling using least absolute shrinkage and selection operator wrapped with support vector machine through nested cross-validation on a discovery cohort (n = 230), to stratify tumors based on Ki-67 <5% and ≥5%. The final model was independently tested on a replication cohort (n = 76). RESULTS: An area under the receiver operating curve (AUC) of 0.84 (95% CI: 0.78-0.90) with a sensitivity of 84.1% and specificity of 73.3% was achieved in the discovery cohort. When this model was applied to the replication cohort, a similar high performance was achieved, with an AUC of 0.83 (95% CI: 0.73-0.94), sensitivity and specificity of 82.6% and 85.5%, respectively. The model demonstrated similar efficacy when applied to skull base and nonskull base tumors. CONCLUSION: Our proposed radiomic feature analysis can be used to stratify WHO grade I meningiomas based on Ki-67 with excellent accuracy and can be applied to skull base and nonskull base tumors with similar performance achieved.


Asunto(s)
Antígeno Ki-67/análisis , Neoplasias Meníngeas , Meningioma , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA