Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biochemistry ; 63(16): 2023-2029, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106042

RESUMEN

The kallikrein-related peptidase KLK2 has restricted expression in the prostate luminal epithelium, and its protein target is unknown. The present work reports the hydrolytic activities of KLK2 on libraries of fluorescence resonance energy-transfer peptides from which the sequence SYRIF was the most susceptible substrate for KLK2. The sequence SYRIF is present at the extracellular N-terminal segment (58SYRIF63Q) of IL-10R2. KLK2 was fully active at pH 8.0-8.2, found only in prostate inflammatory conditions, and strongly activated by sodium citrate and glycosaminoglycans, the quantities and structures controlled by prostate cells. Bone-marrow-derived macrophages (BMDM) have IL-10R2 expressed on the cell surface, which is significantly reduced after KLK2 treatment, as determined by flow cytometry (FACS analysis). The IL-10 inhibition of the inflammatory response to LPS/IFN-γ in BMDM cells due to decreased nitric oxide, TNF-α, and IL-12 p40 levels is significantly reduced upon treatment of these cells with KLK2. Similar experiments with KLK3 did not show these effects. These observations indicate that KLK2 proteolytic activity plays a role in prostate inflammation and makes KLK2 a promising target for prostatitis treatment.


Asunto(s)
Calicreínas , Humanos , Masculino , Calicreínas/metabolismo , Calicreínas/química , Arginina/metabolismo , Arginina/química , Próstata/metabolismo , Próstata/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Animales , Ratones , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Dominios Proteicos , Interleucina-10/metabolismo , Especificidad por Sustrato
2.
Prep Biochem Biotechnol ; : 1-9, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727020

RESUMEN

Transmembrane serine protease 2 (TMPRSS2) is a membrane-bound protease belonging to the type II transmembrane serine protease (TTSP) family. It is a multidomain protein, including a serine protease domain responsible for its self-activation. The protein has been implicated as an oncogenic transcription factor and for its ability to cleave (prime) the SARS-CoV-2 spike protein. In order to characterize the TMPRSS2 biochemical properties, we expressed the serine protease domain (rTMPRSS2_SP) in Komagataella phaffii using the pPICZαA vector and purified it using immobilized metal affinity (Ni Sepharose™ excel) and size exclusion (Superdex 75) chromatography. We explored operational fluorescence resonance energy transfer FRET peptides as substrates. We chose the peptide Abz-QARK-(Dnp)-NH2 (Abz = ortho-aminobenzoic acid, the fluorescence donor, and Dnp = 2,4-dinitrophenyl, the quencher group) as a substrate to find the optimal conditions for maximum enzymatic activity. We found that metallic ions such as Ca2+ and Na+ increased enzymatic activity, but ionic surfactants and reducing agents decreased catalytic capacity. Finally, we determined the rTMPRSS2_SP stability for long-term storage. Altogether, our results represent the first comprehensive characterization of TMPRSS2's biochemical properties, providing valuable insights into its serine protease domain.

3.
J Proteome Res ; 21(11): 2783-2797, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36260604

RESUMEN

Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.


Asunto(s)
Venenos de Araña , Arañas , Animales , Masculino , Femenino , Arañas/genética , Arañas/metabolismo , Venenos de Araña/genética , Venenos de Araña/química , Venenos de Araña/metabolismo , Cisteína/metabolismo , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma/genética , Proteoma/metabolismo , Péptidos/análisis
4.
Langmuir ; 38(11): 3434-3445, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35274959

RESUMEN

Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.


Asunto(s)
Hidrogeles , Nanoestructuras , Amiloide , Animales , Células HeLa , Humanos , Hidrogeles/química , Ratones , Morfogénesis , Células 3T3 NIH , Nanoestructuras/toxicidad , Péptidos/química , Agua
5.
AIDS Res Ther ; 19(1): 2, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022035

RESUMEN

BACKGROUND: We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. METHODS: PBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient's HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients' cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. RESULTS: The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. CONCLUSIONS: MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829 , posted November 11th, 2016).


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Tratamiento Basado en Trasplante de Células y Tejidos , Células Dendríticas , Infecciones por VIH/tratamiento farmacológico , Humanos
6.
Drug Dev Res ; 83(7): 1623-1640, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35989498

RESUMEN

The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Triterpenos Pentacíclicos , Humanos , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Interleucina-6 , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
7.
Molecules ; 26(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443484

RESUMEN

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Asunto(s)
Venenos de Crotálidos/química , Dimerización , Papaína/antagonistas & inhibidores , Péptidos/química , Péptidos/farmacología , SARS-CoV-2/enzimología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Papaína/química , Papaína/metabolismo , Péptidos/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Conformación Proteica , SARS-CoV-2/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 522(2): 368-373, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31761323

RESUMEN

Thimet oligopeptidase (TOP, EC 3.4.24.15) and neurolysin (NEL, EC 3.4.24.16) are closely related zinc-dependent metalo-oligopeptidases, which take part in the metabolism of oligopeptides (from 5 to 17 amino acid residues) inside and outside cells. Both peptidases are ubiquitously distributed in tissues. TOP is one of the main intracellular peptide-processing enzymes being important for the antigen selection in the MHC Class I presentation route, while NEL function has been more associated with the extracellular degradation of neurotensin. Despite efforts being made to develop specific inhibitors for these peptidases, the most used are: CPP-Ala-Ala-Tyr-PABA, described by Orlowski et al. in 1988, and CPP-Ala-Aib-Tyr-PABA (JA-2) that is an analog more resistant to proteolysis, which development was made by Shrimpton et al. in 2000. In the present work, we describe other analogs of these compounds but, with better discriminatory capacity to inhibit specifically NEL or TOP. The modifications introduced in these new analogs were based on a key difference existent in the extended binding sites of NEL and TOP: the negatively charged Glu469 residue of TOP corresponds to the positively charged Arg470 residue of NEL. These residues are in position to interact with the residue at the P1' and/or P2' of their substrates (mimicked by the Ala-Ala/P1'-P2' residues of the CPP-Ala-Ala-Tyr-PABA). Therefore, exploring this single difference, the following compounds were synthesized: CPP-Asp-Ala-Tyr-PABA, CPP-Arg-Ala-Tyr-PABA, CPP-Ala-Asp-Tyr-PABA, CPP-Ala-Arg-Tyr-PABA. Confirming the predictions, the replacement of each non-charged residue of the internal portion Ala-Ala by a charged residue Asp or Arg resulted in compounds with higher selectivity for NEL or TOP, especially due to the electrostatic attraction or repulsion by the NEL Arg470 or TOP Glu469 residue. The CPP-Asp-Ala-Tyr-PABA and CPP-Ala-Asp-Tyr-PABA presented higher affinities for NEL, and, the CFP-Ala-Arg-Tyr-PABA showed higher affinity for TOP.


Asunto(s)
Metaloendopeptidasas/metabolismo , Oligopéptidos/farmacología , Cinética , Metaloendopeptidasas/antagonistas & inhibidores , Mutación/genética , Oligopéptidos/síntesis química , Oligopéptidos/química , Especificidad por Sustrato/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 114(14): E2826-E2835, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28325868

RESUMEN

Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid ß peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to ∼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.


Asunto(s)
Endosomas/metabolismo , Fosfatos de Inositol/metabolismo , Insulisina/metabolismo , Fosfatidilinositoles/metabolismo , Androstadienos/farmacología , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Endosomas/efectos de los fármacos , Activación Enzimática , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Insulisina/química , Insulisina/genética , Liposomas/química , Liposomas/metabolismo , Mutación , Wortmanina
10.
Molecules ; 25(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272799

RESUMEN

The production of bioactive peptides from organic by-waste materials is in line with current trends devoted to guaranteeing environmental protection and a circular economy. The objectives of this study were i) to optimize the conditions for obtaining bioactive hydrolysates from chicken combs and wattles using Alcalase, ii) to identify the resulting peptides using LC-ESI-MS2 and iii) to evaluate their chelating and antioxidant activities. The hydrolysate obtained using a ratio of enzyme to substrate of 5% (w/w) and 240 min of hydrolysis showed excellent Fe2+ chelating and antioxidant capacities, reducing Fe3+ and inhibiting 2, 2'-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The mapping of ion distribution showed that a high degree of hydrolysis led to the production of peptides with m/z ≤ 400, suggesting low mass peptides or peptides with multiple charge precursor ions. The peptides derived from the proteins of cartilage like Collagen alpha-2(I), Collagen alpha-1(I), Collagen alpha-1(III) and elastin contributed to generation of bioactive compounds. Hydrolysates from chicken waste materials could be regarded as candidates to be used as ingredients to design processed foods with functional properties.


Asunto(s)
Cresta y Barbas/efectos de los fármacos , Cresta y Barbas/metabolismo , Hidrólisis/efectos de los fármacos , Péptidos/farmacología , Animales , Antioxidantes/farmacología , Benzotiazoles/farmacología , Compuestos de Bifenilo/farmacología , Pollos , Cromatografía Liquida/métodos , Colágeno/metabolismo , Elastina/metabolismo , Espectrometría de Masas/métodos , Picratos/farmacología , Hidrolisados de Proteína/metabolismo , Subtilisinas/metabolismo , Ácidos Sulfónicos/farmacología
11.
Prep Biochem Biotechnol ; 50(3): 226-233, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31661372

RESUMEN

Traditionally, chymosin has been used for milk-clotting, but this naturally occurring enzyme is in short supply and its use has raised religious and ethical concerns. Because milk-clotting peptidases are a promising substitute for chymosin in cheese preparation, there is a need to find and test the specificity of these enzymes. Here, we evaluated the milk-clotting properties of an aspartic peptidase secreted by Rhizopus microsporus. The molecular mass of this enzyme was estimated at 36 kDa and Pepstatin A was determined to be an inhibitor. Optimal activity occurred at a pH of 5.5 and a temperature range of 50-60 °C, but the peptidase was stable in the pH range of 4-7 and a temperature as low as 45 °C. Proteolytic activity was significantly reduced in the presence of Cu2+ and Al3+. When enzyme substrates based on FRET were used, this peptidase exhibited the highest catalytic efficiency for Abz-KNRSSKQ-EDDnp (4,644 ± 155 mM-1.s-1), Abz-KLRSSNQ-EDDnp (3,514 ± 130 mM-1.s-1), and Abz-KLRQSKQ-EDDnp (3,068 ± 386 mM-1.s-1). This study presents a promising peptidase for use in cheese making, due to its high stability in the presence of Ca2+ and broad pH range of 4-7, in addition to its ability to efficiently clot milk.


Asunto(s)
Proteasas de Ácido Aspártico/química , Proteínas Fúngicas/química , Leche/química , Rhizopus/enzimología , Animales , Bovinos , Concentración de Iones de Hidrógeno
12.
Inflamm Res ; 67(7): 597-608, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29687146

RESUMEN

OBJECTIVE AND DESIGN: The present work investigates the modulation of experimental autoimmune encephalomyelitis (EAE) using genistein before the EAE induction. MATERIAL: Female C57BL/6 mice (n = 96 mice/experiment), 4-6 weeks old, were used to induce the EAE. The mice were divided into three experimental groups: non-immunized group, immunized group (EAE), and immunized and treated with genistein group (Genistein). TREATMENT: Genistein was used at a dose of 200 mg/kg s.c. and were initiated 2 days before the immunization and continued daily until day 6 postimmunization. METHODS: Animals were monitored daily for clinical signs of EAE up to day 21. Inflammatory infiltration, demyelination, Toll-like receptor (TLR) expression, cytokines and transcription factors were analyzed in spinal cords. RESULTS: The present study demonstrates, for the first time, the genistein ability to modulate the factors involved in the innate immune response in the early stages of EAE. The genistein therapy delayed the onset of the disease, with reduced inflammatory infiltration and demyelination. In addition, the expression of TLR3, TLR9 and IFN-ß were increased in genistein group, with reduction in the factors of TH1 and Th17 cells. CONCLUSION: These findings shed light on the potential of genistein as a prophylactic strategy for multiple sclerosis (MS) prevention.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Genisteína/farmacología , Genisteína/uso terapéutico , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Receptores Toll-Like/inmunología , Animales , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/prevención & control , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Endogámicos C57BL , Esclerosis Múltiple/prevención & control , Vaina de Mielina/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología
13.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28607099

RESUMEN

Successful infection by Trypanosoma cruzi, the agent of Chagas' disease, is critically dependent on host cell invasion by metacyclic trypomastigote (MT) forms. Two main metacyclic stage-specific surface molecules, gp82 and gp90, play determinant roles in target cell invasion in vitro and in oral T. cruzi infection in mice. The structure and properties of gp82, which is highly conserved among T. cruzi strains, are well known. Information on gp90 is still rather sparse. Here, we attempted to fill that gap. gp90, purified from poorly invasive G strain MT and expressing gp90 at high levels, inhibited HeLa cell lysosome spreading and the gp82-mediated internalization of a highly invasive CL strain MT expressing low levels of a diverse gp90 molecule. A recombinant protein containing the conserved C-terminal domain of gp90 exhibited the same properties as the native G strain gp90: it counteracted the host cell lysosome spreading induced by recombinant gp82 and exhibited an inhibitory effect on HeLa cell invasion by CL strain MT. Assays to identify the gp90 sequence associated with the property of downregulating MT invasion, using synthetic peptides spanning the gp90 C-terminal domain, revealed the sequence GVLYTADKEW. These data, plus the findings that lysosome spreading was induced upon HeLa cell interaction with CL strain MT, but not with G strain MT, and that in mixed infection CL strain MT internalization was inhibited by G strain MT, suggest that the inhibition of target cell lysosome spreading is the mechanism by which the gp90 molecule exerts its downregulatory role.


Asunto(s)
Endocitosis , Interacciones Huésped-Patógeno , Lisosomas/parasitología , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Células HeLa , Humanos
14.
Angiogenesis ; 20(1): 125-137, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27921229

RESUMEN

Endostatin is a potent anti-angiogenic and anti-tumor protein capable of regressing tumors without inducing acquired resistance. Since it is a fragment of the parental molecule, collagen XVIII, its endogenous production depends on the activity of a specific proteolytic enzyme. While such an enzyme has been described in mice, a human counterpart has not been identified so far. Here, we searched for this enzyme by using a fluorescence resonance energy transfer peptide containing the cleavage site of human collagen XVIII. We found that the cleavage activity was present in various murine and human tumor cells but not in untransformed cells. It was ascribed to a large protein complex identified as an extracellular form of proteasome 20S. Since circulating proteasome 20S has recently emerged as an important marker of tumor progression, the possibility of proteasomes controlling the production of angiostatic endostatin may inspire the development of new anticancer therapies.


Asunto(s)
Colágeno Tipo XVIII/metabolismo , Endostatinas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Colágeno Tipo XVIII/química , Espacio Extracelular/enzimología , Transferencia Resonante de Energía de Fluorescencia , Hemangioendotelioma/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Péptidos/metabolismo , Subunidades de Proteína/metabolismo , Proteolisis
15.
Planta ; 245(2): 343-353, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27778107

RESUMEN

MAIN CONCLUSION: A new BBI-type protease inhibitor with remarkable structural characteristics was purified, cloned, and sequenced from seeds of Maclura pomifera , a dicotyledonous plant belonging to the Moraceae family. In this work, we report a Bowman-Birk inhibitor (BBI) isolated, purified, cloned, and characterized from Maclura pomifera seeds (MpBBI), the first of this type from a species belonging to Moraceae family. MpBBI was purified to homogeneity by RP-HPLC, total RNA was extracted from seeds of M. pomifera, and the 3'RACE-PCR method was applied to obtain the cDNA, which was cloned and sequenced. Peptide mass fingerprinting (PMF) analysis showed correspondence between the in silico-translated protein and MpBBI, confirming that it corresponds to a new plant protease inhibitor. The obtained cDNA encoded a polypeptide of 65 residues and possesses 10 cysteine residues, with molecular mass of 7379.27, pI 6.10, and extinction molar coefficient of 9105 M-1 cm-1. MpBBI inhibits strongly trypsin with K i in the 10-10 M range and was stable in a wide array of pH and extreme temperatures. MpBBI comparative modeling was applied to gain insight into its 3D structure and highlighted some distinguishing features: (1) two non-identical loops, (2) loop 1 (CEEESRC) is completely different from any known BBI, and (3) the amount of disulphide bonds is also different from any reported BBI from dicot plants.


Asunto(s)
Maclura/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/química , Inhibidores de Tripsina/metabolismo , Clonación Molecular , Modelos Moleculares , Mapeo Peptídico , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , Homología de Secuencia de Aminoácido , Tripsina/metabolismo , Inhibidor de la Tripsina de Soja de Bowman-Birk , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación
16.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 388-394, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28089596

RESUMEN

Metacaspases are members of the cysteine peptidase family and may be implicated in programmed cell death in plants and lower eukaryotes. These proteases exhibit calcium-dependent activity and specificity for arginine residues at P1. In contrast to caspases, they do not require processing or dimerization for activity. Indeed, unprocessed metacaspase-2 of Trypanosoma brucei (TbMCA2) is active; however, it has been shown that cleavages at Lys55 and Lys268 increase TbMCA2 hydrolytic activity on synthetic substrates. The processed TbMCA2 comprises 3 polypeptide chains that remain attached by non-covalent bonds. Replacement of Lys55 and Lys268 with Gly via site-directed mutagenesis results in non-processed but enzymatically active mutant, TbMCA2 K55/268G. To investigate the importance of this processing for the activity and specificity of TbMCA2, we performed activity assays comparing the non-processed mutant (TbMCA2 K55/268G) with the processed TbMCA2 form. Significant differences between TbMCA2 WT (processed form) and TbMCA2 K55/268G (non-processed form) were observed. Specifically, we verified that although non-processed TbMCA2 is active when assayed with small synthetic substrates, the TbMCA2 form does not exhibit hydrolytic activity on large substrates such as azocasein, while processed TbMCA2 is able to readily digest this protein. Such differences can be relevant for understanding the physiological regulation and function of TbMCA2.


Asunto(s)
Caspasas/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Sustitución de Aminoácidos , Caspasas/genética , Caspasas/metabolismo , Activación Enzimática , Mutación Missense , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad por Sustrato , Trypanosoma brucei brucei/genética
17.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 558-564, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28254587

RESUMEN

Human kallikrein 6 (KLK6) is highly expressed in the central nervous system and with elevated level in demyelinating disease. KLK6 has a very restricted specificity for arginine (R) and hydrolyses myelin basic protein, protein activator receptors and human ionotropic glutamate receptor subunits. Here we report a previously unreported activity of KLK6 on peptides containing clusters of basic amino acids, as in synthetic fluorogenic peptidyl-Arg-7-amino-4-carbamoylmethylcoumarin (peptidyl-ACC) peptides and FRET peptides in the format of Abz-peptidyl-Q-EDDnp (where Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-(2,4-dinitrophenyl) ethylenediamine), in which pairs or sequences of basic amino acids (R or K) were introduced. Surprisingly, KLK6 hydrolyzed the fluorogenic peptides Bz-A-R↓R-ACC and Z-R↓R-MCA between the two R groups, resulting in non-fluorescent products. FRET peptides containing furin processing sequences of human MMP-14, nerve growth factor (NGF), Neurotrophin-3 (NT-3) and Neurotrophin-4 (NT-4) were cleaved by KLK6 at the same position expected by furin. Finally, KLK6 cleaved FRET peptides derived from human proenkephalin after the KR, the more frequent basic residues flanking enkephalins in human proenkephalin sequence. This result suggests the ability of KLK6 to release enkephalin from proenkephalin precursors and resembles furin a canonical processing proteolytic enzyme. Molecular models of peptides were built into the KLK6 structure and the marked preference of the cut between the two R of the examined peptides was related to the extended conformation of the substrates.


Asunto(s)
Calicreínas/metabolismo , Cinética , Péptido Hidrolasas/metabolismo , Péptidos/química , Aminoácidos Básicos/química , Aminoácidos Básicos/genética , Encefalinas/química , Encefalinas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Furina/química , Furina/metabolismo , Humanos , Hidrólisis , Calicreínas/química , Calicreínas/genética , Metaloproteinasa 14 de la Matriz/química , Metaloproteinasa 14 de la Matriz/metabolismo , Modelos Moleculares , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/metabolismo , Neurotrofina 3 , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptidos/metabolismo , Conformación Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Proteolisis , Especificidad por Sustrato
18.
Med Microbiol Immunol ; 206(2): 149-156, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27995367

RESUMEN

Paracoccidioides brasiliensis is one of the etiological agents of the human systemic mycosis paracoccidioidomycosis. Protease-activated receptors (PARs) are expressed in many cell types and comprise a family of G protein-coupled receptors (PAR-1, PAR-2, and PAR-4), which may be activated by proteases secreted by several pathogens. In the present study, we showed that the pathogenic fungus P. brasiliensis secretes components that promote interleukin (IL)-6 and IL-8 secretion by the lung epithelial cell line A549. Cytokine secretion was reduced by antagonistic peptides for PAR-1 and PAR-2, but not for PAR-4. P. brasiliensis proteases were isolated from fungal culture supernatants in a p-aminomethylbenzamidine-Sepharose column. The obtained fractions were tested for enzymatic activity against fluorescence resonance energy transfer (FRET) peptides derived from sequences that spanned the activation sites of human PARs. The eluted fraction, termed PbP, contained protease activities that were able to hydrolyze the FRET peptides. PbP also induced IL-6 and IL-8 secretion in A549 epithelial cells, which was reduced upon heat inactivation of PbP, incubation with antagonistic peptides for PAR-1 and PAR-2, and the protease inhibitors aprotinin, leupeptin, and E-64. Together, these results show for the first time that P. brasiliensis yeasts secrete proteases that activate PARs in lung epithelial cells, leading to cytokine secretion.


Asunto(s)
Citocinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Paracoccidioides , Receptores Proteinasa-Activados/metabolismo , Células A549 , Línea Celular , Supervivencia Celular/inmunología , Endopeptidasas/metabolismo , Células Epiteliales/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Paracoccidioides/enzimología , Paracoccidioides/inmunología , Paracoccidioidomicosis/inmunología , Paracoccidioidomicosis/metabolismo , Paracoccidioidomicosis/microbiología , Péptidos/metabolismo , Inhibidores de Proteasas/farmacología , Proteolisis/efectos de los fármacos
19.
Planta Med ; 83(8): 693-700, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27997959

RESUMEN

Multiple sclerosis is a chronic inflammatory and autoimmune disease of the central nervous system that affects more than 2.5 million people worldwide. Experimental autoimmune encephalomyelitis is a murine autoimmune disease used to study multiple sclerosis. Parthenolide, a natural sesquiterpene lactone found in Tanacetum parthenium L., is known for its strong anti-inflammatory activity. Herein, we have investigated the in vitro immunomodulatory effects of parthenolide on cytokine production and nitric oxide in cultured cells from myelin oligodendrocyte glycoprotein 35-55 amino acid peptide mice. Experimental autoimmune encephalomyelitis was induced in C57BL/6 mice with myelin oligodendrocyte glycoprotein 35-55 amino acid peptide, and parthenolide was isolated from T. parthenium. Splenocytes and peritoneal cells were obtained from experimental autoimmune encephalomyelitis-induced mice and incubated with parthenolide (1, 5, and 20 µM). After in vitro treatment with parthenolide, supernatants were collected, and nitric oxide and cytokines were measured. The results suggested that parthenolide may regulate the activity of Th17 and Th1 cells, mainly by decreasing IL-17, TNF-α, and interferon gamma production. This modulation may be related to the lower levels of IL-12p40 and IL-6 after treatment with parthenolide. It was shown, for the first time, that parthenolide presents in vitro immunomodulatory effects on inflammatory mediators produced by cells from experimental autoimmune encephalomyelitis-induced mice.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inmunidad Celular/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Sesquiterpenos/uso terapéutico , Tanacetum parthenium/química , Animales , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Factores Inmunológicos/uso terapéutico , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Sesquiterpenos/aislamiento & purificación , Bazo/citología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología
20.
Biochim Biophys Acta ; 1854(1): 73-83, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25448018

RESUMEN

KLK7 substrate specificity was evaluated by families of fluorescence resonance energy transfer (FRET) peptides derived from Abz-KLFSSK-Q-EDDnp (Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-[2,4-dinitrophenyl] ethylenediamine), by one bead-one peptide FRET peptide library in PEGA resin, and by the FRET peptide libraries Abz-GXX-Z-XX-Q-EDDnp (Z and X are fixed and random natural amino acids, respectively). KLK7 hydrolyzed preferentially F, Y or M, and its S1' and S2' subsites showed selectivity for hydrophilic amino acids, particularly R and K. This set of specificities was confirmed by the efficient kininogenase activity of KLK7 on Abz-MISLM(↓)KRPPGFSPF(↓)RSSRI-NH2 ((↓)indicates cleavage), hydrolysis of somatostatin and substance P and inhibition by kallistatin. The peptide Abz-NLY(↓)RVE-Q-EDDnp is the best synthetic substrate so far described for KLK7 [kcat/Km=455 (mMs)(-1)] that was designed from the KLK7 substrate specificity analysis. It is noteworthy that the NLYRVE sequence is present in human semaphorin 6B. KLK7 is activated by GAGs, inhibited by neutral salts, and activated by high concentration of kosmotropic salt. Pyroglutamic acid inhibited KLK7 (Ki=33mM) and is present in skin moisturizing factor (124mM). The KLK7 specificity described here and elsewhere reflects its participation in patho-physiological events in skin, the gastrointestinal tract and central nervous system, where KLK7 is significantly expressed.


Asunto(s)
Glicosaminoglicanos/farmacología , Calicreínas/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Hidrólisis/efectos de los fármacos , Cinética , Quininógenos/metabolismo , Datos de Secuencia Molecular , Concentración Osmolar , Ácido Pirrolidona Carboxílico/farmacología , Semaforinas/metabolismo , Serpinas/metabolismo , Somatostatina/metabolismo , Sustancia P/metabolismo , Especificidad por Sustrato , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA