Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 598(7880): 321-326, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34552245

RESUMEN

Mounting evidence shows that dopamine in the striatum is critically involved in reward-based reinforcement learning1,2. However, it remains unclear how dopamine reward signals influence the entorhinal-hippocampal circuit, another brain network that is crucial for learning and memory3-5. Here, using cell-type-specific electrophysiological recording6, we show that dopamine signals from the ventral tegmental area and substantia nigra control the encoding of cue-reward association rules in layer 2a fan cells of the lateral entorhinal cortex (LEC). When mice learned novel olfactory cue-reward associations using a pre-learned association rule, spike representations of LEC fan cells grouped newly learned rewarded cues with a pre-learned rewarded cue, but separated them from a pre-learned unrewarded cue. Optogenetic inhibition of fan cells impaired the learning of new associations while sparing the retrieval of pre-learned memory. Using fibre photometry, we found that dopamine sends novelty-induced reward expectation signals to the LEC. Inhibition of LEC dopamine signals disrupted the associative encoding of fan cells and impaired learning performance. These results suggest that LEC fan cells represent a cognitive map of abstract task rules, and that LEC dopamine facilitates the incorporation of new memories into this map.


Asunto(s)
Dopamina/metabolismo , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Memoria/fisiología , Animales , Anticipación Psicológica , Señales (Psicología) , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células Piramidales/metabolismo , Recompensa
2.
Neural Plast ; 2012: 854285, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23346419

RESUMEN

Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.


Asunto(s)
Hipocampo/fisiología , Trastornos Mentales/terapia , Neurogénesis/fisiología , Adulto , Antidepresivos/uso terapéutico , Estimulación Encefálica Profunda , Trastorno Depresivo Mayor/psicología , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva , Terapia por Ejercicio , Humanos , Trastornos Mentales/psicología , Plasticidad Neuronal/fisiología , Esquizofrenia/terapia , Trastornos Relacionados con Sustancias/psicología , Trastornos Relacionados con Sustancias/terapia
3.
Curr Opin Neurobiol ; 77: 102641, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36219950

RESUMEN

Learning leads to a neuronal representation of acquired knowledge. This idea of knowledge representation was traditionally developed as a "cognitive map" of spatial memory represented in the hippocampus. The framework of cognitive mapping has been extended in the past decade to include not only spatial memory, but also non-spatial factual and temporal memory. Following this conceptual advancement, a line of recent neurophysiological research discovered such knowledge representations not only in the hippocampus, but also in the entorhinal cortex and frontal cortex. Although the distinct terms "cognitive map," "schema," "abstract task structure" or "categorization" were used in these studies, it is likely that these terms can be reconciled as a common mechanism of learned knowledge representations. Future experimental work will be required to differentiate the parametric nature of knowledge representations across brain areas.


Asunto(s)
Corteza Entorrinal , Hipocampo , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Aprendizaje/fisiología , Cognición
4.
Front Syst Neurosci ; 16: 955178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090186

RESUMEN

Clinical evidence suggests that the entorhinal cortex is a primary brain area triggering memory impairments in Alzheimer's disease (AD), but the underlying brain circuit mechanisms remain largely unclear. In healthy brains, sharp-wave ripples (SWRs) in the hippocampus and entorhinal cortex play a critical role in memory consolidation. We tested SWRs in the MEC layers 2/3 of awake amyloid precursor protein knock-in (APP-KI) mice, recorded simultaneously with SWRs in the hippocampal CA1. We found that MEC→CA1 coordination of SWRs, found previously in healthy brains, was disrupted in APP-KI mice even at a young age before the emergence of spatial memory impairments. Intriguingly, long-duration SWRs critical for memory consolidation were mildly diminished in CA1, although SWR density and amplitude remained intact. Our results point to SWR incoordination in the entorhinal-hippocampal circuit as an early network symptom that precedes memory impairment in AD.

5.
STAR Protoc ; 2(3): 100759, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467228

RESUMEN

Hippocampal place cells and entorhinal grid cells exhibit distinct spike patterns in different environments called "remapping," and we have recently shown that remapping of place cells becomes disrupted in a mouse model of Alzheimer's disease. Here, we describe our protocol for investigating remapping of place cells and grid cells using a custom-made electrophysiology device, with detailed descriptions and problem-solving tips for the construction and implantation of the recording device. We also provide steps for behavioral training, recording, and data analysis. For complete details on the use and execution of this protocol, please refer to Jun et al. (2020).


Asunto(s)
Modelos Animales de Enfermedad , Electrofisiología/instrumentación , Electrofisiología/métodos , Hipocampo/citología , Animales , Conducta Animal , Región CA1 Hipocampal/citología , Craneotomía , Electrodos Implantados , Femenino , Masculino , Ratones Endogámicos C57BL
6.
Cell Stem Cell ; 28(5): 955-966.e7, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33848469

RESUMEN

Stem cell dysfunction drives many age-related disorders. Identifying mechanisms that initially compromise stem cell behavior represent early targets to promote tissue function later in life. Here, we pinpoint multiple factors that disrupt neural stem cell (NSC) behavior in the adult hippocampus. Clonal tracing showed that NSCs exhibit asynchronous depletion by identifying short-term NSCs (ST-NSCs) and long-term NSCs (LT-NSCs). ST-NSCs divide rapidly to generate neurons and deplete in the young brain. Meanwhile, multipotent LT-NSCs are maintained for months but are pushed out of homeostasis by lengthening quiescence. Single-cell transcriptome analysis of deep NSC quiescence revealed several hallmarks of molecular aging in the mature brain and identified tyrosine-protein kinase Abl1 as an NSC aging factor. Treatment with the Abl inhibitor imatinib increased NSC activation without impairing NSC maintenance in the middle-aged brain. Our study indicates that hippocampal NSCs are particularly vulnerable and adaptable to cellular aging.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Encéfalo , Senescencia Celular , Hipocampo
7.
Neuron ; 107(6): 1095-1112.e6, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32697942

RESUMEN

Patients with Alzheimer's disease (AD) suffer from spatial memory impairment and wandering behavior, but the brain circuit mechanisms causing such symptoms remain largely unclear. In healthy brains, spatially tuned hippocampal place cells and entorhinal grid cells exhibit distinct spike patterns in different environments, a circuit function called "remapping." We tested remapping in amyloid precursor protein knockin (APP-KI) mice with impaired spatial memory. CA1 neurons, including place cells, showed disrupted remapping, although their spatial tuning was only mildly diminished. Medial entorhinal cortex (MEC) neurons severely lost their spatial tuning and grid cells were almost absent. Fast gamma oscillatory coupling between the MEC and CA1 was also impaired. Mild disruption of MEC grid cells emerged in younger APP-KI mice, although the spatial memory and CA1 remapping of the animals remained intact. These results point to remapping impairment in the hippocampus, possibly linked to grid cell disruption, as circuit mechanisms underlying spatial memory impairment in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Región CA1 Hipocampal/fisiopatología , Conectoma , Corteza Entorrinal/fisiopatología , Neuronas/clasificación , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Región CA1 Hipocampal/patología , Corteza Entorrinal/patología , Femenino , Ritmo Gamma , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Neuronas/patología , Neuronas/fisiología
8.
Neurosci Res ; 129: 40-46, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29438778

RESUMEN

Gamma oscillations that occur within the entorhinal cortex-hippocampal circuitry play important roles in the formation and retrieval of memory in healthy brains. Recent studies report that gamma oscillations are impaired in the entorhinal-hippocampal circuit of Alzheimer's disease (AD) patients and AD animal models. Here we review the latest advancements in studies of entorhinal-hippocampal gamma oscillations in healthy memory and dementia. This review is especially salient for readers in Alzheimer's research field not familiar with in vivo electrophysiology. Recent studies have begun to show a causal link between gamma oscillations and AD pathology, suggesting that gamma oscillations may even offer a plausible future therapeutic target.


Asunto(s)
Demencia/fisiopatología , Demencia/psicología , Corteza Entorrinal/fisiología , Ritmo Gamma , Hipocampo/fisiología , Memoria , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Animales , Corteza Entorrinal/fisiopatología , Hipocampo/fisiopatología , Humanos , Vías Nerviosas/fisiopatología , Neuronas/fisiología
9.
Aging Cell ; 16(3): 598-601, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383136

RESUMEN

Aging causes significant declines in adult hippocampal neurogenesis and leads to cognitive disability. Emerging evidence demonstrates that decline in the mitotic checkpoint kinase BubR1 level occurs with natural aging and induces progeroid features in both mice and children with mosaic variegated aneuploidy syndrome. Whether BubR1 contributes to age-related deficits in hippocampal neurogenesis is yet to be determined. Here we report that BubR1 expression is significantly reduced with natural aging in the mouse brain. Using established progeroid mice expressing low amounts of BubR1, we demonstrate these mice exhibit deficits in neural progenitor proliferation and maturation, leading to reduction in new neuron production. Collectively, our identification of BubR1 as a new and critical factor controlling sequential steps across neurogenesis raises the possibility that BubR1 may be a key mediator regulating aging-related hippocampal pathology. Targeting BubR1 may represent a novel therapeutic strategy for age-related cognitive deficits.


Asunto(s)
Envejecimiento/genética , Proteínas de Ciclo Celular/genética , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Progeria/genética , Proteínas Serina-Treonina Quinasas/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/deficiencia , Diferenciación Celular , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Regulación del Desarrollo de la Expresión Génica , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Células-Madre Neurales/patología , Plasticidad Neuronal/genética , Neuronas/patología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Progeria/metabolismo , Progeria/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/deficiencia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
10.
Brain Stimul ; 8(6): 1021-1024, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26281755

RESUMEN

BACKGROUND: Electroconvulsive shock (ECS), also known as an electroconvulsive therapy (ECT), is an effective and safe treatment for neuropsychiatric disorders including pharmacoresistant major depressive disorder. Previous research in animal models suggests ECS efficacy is achieved by Gadd45b-mediated increases in adult hippocampal neurogenesis. OBJECTIVE/HYPOTHESIS: The present study aims to delineate the role of Gadd45b in mediating proliferation of neural stem cell types including quiescent radial glia-like (RGL) and amplifying non-radial glia-like (non-RGL) neural precursors following ECS. METHODS: RGL and non-RGL neural stem cell populations defined by co-localization of MCM2+ and nestin+ cells and morphologically by the presence of radial processes were stereologically analyzed. RESULTS: ECS increased hippocampal density of both quiescent RGLs and amplifying non-RGLs. CONCLUSIONS: Gadd45b mediates the action of ECS-induced proliferation through activation of quiescent neural stem cells.


Asunto(s)
Antígenos de Diferenciación/fisiología , Proliferación Celular/fisiología , Electrochoque/métodos , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Animales , Femenino , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Mol Brain ; 8: 52, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26337530

RESUMEN

BACKGROUND: A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. RESULTS: Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. CONCLUSIONS: Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.


Asunto(s)
Envejecimiento/metabolismo , Giro Dentado/metabolismo , Glicoproteínas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Animales Recién Nacidos , Giro Dentado/citología , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Neuroglía/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
12.
Neurosci Biobehav Rev ; 47: 369-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25263701

RESUMEN

In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms.


Asunto(s)
Hipocampo/fisiopatología , Trastornos Mentales/fisiopatología , Neurogénesis/fisiología , Vía de Señalización Wnt/fisiología , Animales , Humanos , Aprendizaje/fisiología , Neuronas/fisiología
13.
J Vis Exp ; (78)2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24022759

RESUMEN

Traditional methods of immunohistochemistry (IHC) following tissue fixation allow visualization of various cell types. These typically proceed with the application of antibodies to bind antigens and identify cells with characteristics that are a function of the inherent biology and development. Adult hippocampal neurogenesis is a sequential process wherein a quiescent neural stem cell can become activated and proceed through stages of proliferation, differentiation, maturation and functional integration. Each phase is distinct with a characteristic morphology and upregulation of genes. Identification of these phases is important to understand the regulatory mechanisms at play and any alterations in this process that underlie the pathophysiology of debilitating disorders. Our heat-induced antigen retrieval approach improves the intensity of the signal that is detected and allows correct identification of the progenitor cell type. As discussed in this paper, it especially allows us to circumvent current problems in detection of certain progenitor cell types.


Asunto(s)
Antígenos/análisis , Hipocampo/citología , Inmunohistoquímica/métodos , Células-Madre Neurales/citología , Animales , Hipocampo/química , Ratones , Células-Madre Neurales/química , Neurogénesis
14.
Cell Stem Cell ; 12(2): 215-23, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23395446

RESUMEN

Adult neurogenesis, the process of generating mature neurons from adult neural stem cells, proceeds concurrently with ongoing neuronal circuit activity and is modulated by various physiological and pathological stimuli. The niche mechanism underlying the activity-dependent regulation of the sequential steps of adult neurogenesis remains largely unknown. Here, we report that neuronal activity decreases the expression of secreted frizzled-related protein 3 (sFRP3), a naturally secreted Wnt inhibitor highly expressed by adult dentate gyrus granule neurons. Sfrp3 deletion activates quiescent radial neural stem cells and promotes newborn neuron maturation, dendritic growth, and dendritic spine formation in the adult mouse hippocampus. Furthermore, sfrp3 reduction is essential for activity-induced adult neural progenitor proliferation and the acceleration of new neuron development. Our study identifies sFRP3 as an inhibitory niche factor from local mature dentate granule neurons that regulates multiple phases of adult hippocampal neurogenesis and suggests an interesting activity-dependent mechanism governing adult neurogenesis via the acute release of tonic inhibition.


Asunto(s)
Hipocampo/citología , Proteínas/metabolismo , Animales , Femenino , Hibridación in Situ , Ratones , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neurogénesis/fisiología , Pilocarpina/farmacología , Proteínas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA