Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533783

RESUMEN

Exposure to repetitive head impacts (RHIs) in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE) which currently can be diagnosed only at postmortem. American football players are at higher risk of developing CTE given their exposure to RHIs. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at postmortem in living individuals using structural magnetic resonance imaging (MRI). MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 58 age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each Traumatic Encephalopathy Syndrome (TES) diagnosis core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula temporal pole and superior frontal gyrus. Post-hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe age-by-group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggest that MRI morphometrics detects abnormalities in individuals with a history of RHI exposure that resemble the anatomic distribution of pathological findings from postmortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggests that brain morphometry must be complemented by other types of measures to characterize individuals with RHIs.

2.
J Affect Disord ; 361: 768-777, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897303

RESUMEN

BACKGROUND: Military veterans with posttraumatic stress disorder (PTSD) commonly experience posttraumatic guilt. Guilt over commission or omission evolves when responsibility is assumed for an unfortunate outcome (e.g., the death of a fellow combatant). Survivor guilt is a state of intense emotional distress experienced by the weight of knowing that one survived while others did not. METHODS: This study of the Translational Research Center for TBI and Stress Disorders (TRACTS) analyzed structural and diffusion-weighted magnetic resonance imaging data from 132 male Iraq/Afghanistan veterans with PTSD. The Clinician-Administered PTSD Scale for DSM-IV (CAPS-IV) was employed to classify guilt. Thirty (22.7 %) veterans experienced guilt over acts of commission or omission, 34 (25.8 %) experienced survivor guilt, and 68 (51.5 %) had no posttraumatic guilt. White matter microstructure (fractional anisotropy, FA), cortical thickness, and cortical volume were compared between veterans with guilt over acts of commission or omission, veterans with survivor guilt, and veterans without guilt. RESULTS: Veterans with survivor guilt had significantly lower white matter FA compared to veterans who did not experience guilt (p < .001), affecting several regions of major white matter fiber bundles. There were no significant differences in white matter FA, cortical thickness, or volumes between veterans with guilt over acts of commission or omission and veterans without guilt (p > .050). LIMITATIONS: This cross-sectional study with exclusively male veterans precludes inferences of causality between the studied variables and generalizability to the larger veteran population that includes women. CONCLUSION: Survivor guilt may be a particularly impactful form of posttraumatic guilt that requires specific treatment efforts targeting brain health.

3.
J Clin Med ; 12(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37629457

RESUMEN

The gray matter/white matter (GM/WM) boundary of the brain is vulnerable to shear strain associated with mild traumatic brain injury (mTBI). It is, however, unknown whether GM/WM microstructure is associated with long-term outcomes following mTBI. The diffusion and structural MRI data of 278 participants between 18 and 65 years of age with and without military background from the Department of Defense INTRuST study were analyzed. Fractional anisotropy (FA) was extracted at the GM/WM boundary across the brain and for each lobe. Additionally, two conventional analytic approaches were used: whole-brain deep WM FA (TBSS) and whole-brain cortical thickness (FreeSurfer). ANCOVAs were applied to assess differences between the mTBI cohort (n = 147) and the comparison cohort (n = 131). Associations between imaging features and post-concussive symptom severity, and functional and cognitive impairment were investigated using partial correlations while controlling for mental health comorbidities that are particularly common among military cohorts and were present in both the mTBI and comparison group. Findings revealed significantly lower whole-brain and lobe-specific GM/WM boundary FA (p < 0.011), and deep WM FA (p = 0.001) in the mTBI cohort. Whole-brain and lobe-specific GM/WM boundary FA was significantly negatively correlated with post-concussive symptoms (p < 0.039), functional (p < 0.016), and cognitive impairment (p < 0.049). Deep WM FA was associated with functional impairment (p = 0.002). Finally, no significant difference was observed in cortical thickness, nor between cortical thickness and outcome (p > 0.05). Findings from this study suggest that microstructural alterations at the GM/WM boundary may be sensitive markers of adverse long-term outcomes following mTBI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA