Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nano Lett ; 24(6): 1891-1900, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38150559

RESUMEN

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of ∼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.

2.
Nanotechnology ; 35(26)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38387091

RESUMEN

In-plane anisotropic two-dimensional (2D) materials exhibit in-plane orientation-dependent properties. The anisotropic unit cell causes these materials to show lower symmetry but more diverse physical properties than in-plane isotropic 2D materials. In addition, the artificial stacking of in-plane anisotropic 2D materials can generate new phenomena that cannot be achieved in in-plane isotropic 2D materials. In this perspective we provide an overview of representative in-plane anisotropic 2D materials and their properties, such as black phosphorus, group IV monochalcogenides, group VI transition metal dichalcogenides with 1T' and Tdphases, and rhenium dichalcogenides. In addition, we discuss recent theoretical and experimental investigations of twistronics using in-plane anisotropic 2D materials. Both in-plane anisotropic 2D materials and their twistronics hold considerable potential for advancing the field of 2D materials, particularly in the context of orientation-dependent optoelectronic devices.

3.
Nanotechnology ; 33(50)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36137438

RESUMEN

Transition metal dichalcogenides is an emerging 2D semiconducting material group which has excellent physical properties in the ultimately scaled thickness dimension. Specifically, van der Waals heterostructures hold the great promise in further advancing both the fundamental scientific knowledge and practical technological applications of 2D materials. Although 2D materials have been extensively studied for various sensing applications, temperature sensing still remains relatively unexplored. In this work, we experimentally study the temperature-dependent Raman spectroscopy and electrical conductivity of molybdenum disulfide (MoS2) and its heterostructures with platinum dichalcogenides (PtSe2and PtTe2) to explore their potential to become the next-generation temperature sensor. It is found that the MoS2-PtX2heterostructure shows the great promise as the high-sensitivity temperature sensor.

4.
Nanotechnology ; 33(47)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35944420

RESUMEN

Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS2) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS2layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS2/CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS2layers. Furthermore, VA-2D MoS2/CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS2/CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics.

5.
Nano Lett ; 20(5): 3925-3934, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32310659

RESUMEN

We report a novel strategy to assemble wafer-scale two-dimensional (2D) transition metal dichalcogenide (TMD) layers of well-defined components and orientations. We directly grew a variety of 2D TMD layers on "water-dissoluble" single-crystalline salt wafers and precisely delaminated them inside water in a chemically benign manner. This manufacturing strategy enables the automated integration of vertically aligned 2D TMD layers as well as 2D/2D heterolayers of arbitrary stacking orders on exotic substrates insensitive to their kind and shape. Furthermore, the original salt wafers can be recycled for additional growths, confirming high process sustainability and scalability. The generality and versatility of this approach have been demonstrated by developing proof-of-concept "all 2D" devices for diverse yet unconventional applications. This study is believed to shed a light on leveraging opportunities of 2D TMD layers toward achieving large-area mechanically reconfigurable devices of various form factors at the industrially demanded scale.

6.
Nano Lett ; 20(1): 272-277, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31821008

RESUMEN

While various effects of physicochemical parameters (e.g., size, facet, composition, and internal structure) on the catalytic efficiency of nanozymes (i.e., nanoscale enzyme mimics) have been studied, the strain effect has never been reported and understood before. Herein, we demonstrate the strain effect in nanozymes by using Pd octahedra and icosahedra with peroxidase-like activities as a model system. Strained Pd icosahedra were found to display 2-fold higher peroxidase-like catalytic efficiency than unstrained Pd octahedra. Theoretical analysis suggests that tensile strain is more beneficial to OH radical (a key intermediate for the catalysis) generation than compressive strain. Pd icosahedra are more active than Pd octahedra because icosahedra amplify the surface strain field. As a proof-of-concept demonstration, the strained Pd icosahedra were applied to an immunoassay of biomarkers, outperforming both unstrained Pd octahedra and natural peroxidases. The findings in this research may serve as a strong foundation to guide the design of high-performance nanozymes.


Asunto(s)
Nanoestructuras/química , Paladio/química , Peroxidasas/química , Catálisis , Oxidación-Reducción
7.
Nanotechnology ; 31(43): 435405, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-32629437

RESUMEN

Flexible smart electronics require their energy storage device to be flexible in nature. Developing high-performance flexible energy storage devices require direct integration of electrode active materials on current collectors to satisfy the high electronic/ionic conductivity and long-term durability requirements. Herein, we develop a flexible all-solid-state asymmetric supercapacitor comprised of reduced graphene oxide (rGO) and core/shell tungsten trioxide/tungsten disulfide (WO3/WS2) nanowire based electrodes. The electrodes synthesized via electrochemical deposition and chemical vapor deposition avoided the necessity to use non-conductive binders and offered excellent cyclic stability. The structural integrity provided by the rGO and WO3/WS2 electrodes facilitated excellent electrochemical stability with capacitance retention of 90% and 100% after 10 000 charge-discharge cycles, respectively. An all-solid-state device provides a voltage window of 1.5 V and more than 70% capacitance retention after 10 000 charge-discharge cycles. Providing 97% capacitance retention upon mechanical bending reveals its potential to be used as an energy storage devices in flexible electronics.

8.
Nano Lett ; 19(8): 5194-5204, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31260632

RESUMEN

A globally imminent shortage of freshwater has been demanding viable strategies for improving desalination efficiencies with the adoption of cost- and energy-efficient membrane materials. The recently explored 2D transition metal dichalcogenides (2D TMDs) of near atomic thickness have been envisioned to offer notable advantages as high-efficiency membranes owing to their structural uniqueness; that is, extremely small thickness and intrinsic atomic porosity. Despite theoretically projected advantages, experimental realization of near atom-thickness 2D TMD-based membranes and their desalination efficiency assessments have remained largely unexplored mainly due to the technical difficulty associated with their seamless large-scale integration. Herein, we report the experimental demonstration of high-efficiency water desalination membranes based on few-layer 2D molybdenum disulfide (MoS2) of only ∼7 nm thickness. Chemical vapor deposition (CVD)-grown centimeter-scale 2D MoS2 layers were integrated onto porous polymeric supports with well-preserved structural integrity enabled by a water-assisted 2D layer transfer method. These 2D MoS2 membranes of near atomic thickness exhibit an excellent combination of high water permeability (>322 L m-2 h-1 bar-1) and high ionic sieving capability (>99%) for various seawater salts including Na+, K+, Ca2+, and Mg2+ with a range of concentrations. Moreover, they present near 100% salt ion rejection rates for actual seawater obtained from the Atlantic coast, significantly outperforming the previously developed 2D MoS2 layer membranes of micrometer thickness as well as conventional reverse osmosis (RO) membranes. Underlying principles behind such remarkably excellent desalination performances are attributed to the intrinsic atomic vacancies inherent to the CVD-grown 2D MoS2 layers as verified by aberration-corrected electron microscopy characterization.

9.
Nano Lett ; 19(11): 7598-7607, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31244238

RESUMEN

Two-dimensional transition-metal dichalcogenide (2D TMD) layers are highly attractive for emerging stretchable and foldable electronics owing to their extremely small thickness coupled with extraordinary electrical and optical properties. Although intrinsically large strain limits are projected in them (i.e., several times greater than silicon), integrating 2D TMDs in their pristine forms does not realize superior mechanical tolerance greatly demanded in high-end stretchable and foldable devices of unconventional form factors. In this article, we report a versatile and rational strategy to convert 2D TMDs of limited mechanical tolerance to tailored 3D structures with extremely large mechanical stretchability accompanying well-preserved electrical integrity and modulated transport properties. We employed a concept of strain engineering inspired by an ancient paper-cutting art, known as kirigami patterning, and developed 2D TMD-based kirigami electrical conductors. Specifically, we directly integrated 2D platinum diselenide (2D PtSe2) layers of controlled carrier transport characteristics on mechanically flexible polyimide (PI) substrates by taking advantage of their low synthesis temperature. The metallic 2D PtSe2/PI kirigami patterns of optimized dimensions exhibit an extremely large stretchability of ∼2000% without compromising their intrinsic electrical conductance. They also present strain-tunable and reversible photoresponsiveness when interfaced with semiconducting carbon nanotubes (CNTs), benefiting from the formation of 2D PtSe2/CNT Schottky junctions. Moreover, kirigami field-effect transistors (FETs) employing semiconducting 2D PtSe2 layers exhibit tunable gate responses coupled with mechanical stretching upon electrolyte gating. The exclusive role of the kirigami pattern parameters in the resulting mechanoelectrical responses was also verified by a finite-element modeling (FEM) simulation. These multifunctional 2D materials in unconventional yet tailored 3D forms are believed to offer vast opportunities for emerging electronics and optoelectronics.

10.
Anal Chem ; 91(18): 11770-11777, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31333017

RESUMEN

Recent advancements in MoS2 nanofilms have aided in the development for important water-related environmental applications. However, a MoS2 nanofilm-coated sensor has yet to have been applied for heavy metal detection in water-related environmental samples. In this study, a novel vertically aligned two-dimensional (2D) MoS2 (edge exposed) nanofilm was applied for in situ lead ion (Pb2+) detection. The developed sensor showed an excellent linear relationship toward Pb2+ between 0 and 20 ppb at -0.45 V vs Ag/AgCl using square wave anodic stripping voltammetry (SWASV) with the improved limit of detection (LOD) of 0.3 ppb in a tap water environment. The vertically aligned 2D MoS2 sensor exhibited improved detection sensitivity (2.8 folds greater than a previous metallic [Bi] composite electrode) with lower relative standard deviation for repetitive measurements (n = 11), indicating enhanced reproducibility for Pb2+ detection. The vertically aligned 2D MoS2 layers exhibited 2.6 times higher sensitivity than horizontally aligned 2D MoS2 (basal plane exposed). Density functional theory calculations demonstrated that adsorption energy of Pb on the MoS2 side edge was much higher (4.11 eV) than those on the basal plane (0.36 and 0.07 eV). In addition, the band gap center of vertical MoS2 was found to be higher than the Pb2+ → Pb reduction potential level and capable of reducing Pb2+. Overall, the newly developed vertically aligned 2D MoS2 sensor showed excellent performance for detecting Pb2+ in a real drinking water environment with good reliability.


Asunto(s)
Agua Potable/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Plomo/análisis , Nanoestructuras/química , Calibración , Teoría Funcional de la Densidad , Disulfuros/química , Electrodos , Diseño de Equipo , Límite de Detección , Metales Pesados/química , Molibdeno/química , Contaminantes Químicos del Agua/análisis
11.
Nanotechnology ; 30(20): 202001, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-30754027

RESUMEN

Electrochemical capacitors or supercapacitors have achieved great interest in the recent past due to their potential applications ranging from microelectronic devices to hybrid electric vehicles. Supercapacitors can provide high power densities but their inherently low energy density remains a great challenge. The high-performance supercapacitors utilize large electrode surface area for electrochemical double-layer capacitance and/or pseudocapacitance. To enhance the performance of supercapacitors, various strategies have been adopted such as electrode nanostructuring, hybrid electrode designs using nanocomposite electrodes and hybrid supercapacitor (HSC) configurations. Nanoarchitecturing of electrode-active materials is an effective way of enhancing the performance of supercapacitors as it increases the effective electrode surface area for enhanced electrode/electrolyte interaction. In this review, we focus on the recent developments in the novel electrode materials and various hybrid designs used in supercapacitors for obtaining high specific capacitance and energy density. A family of electrode-active materials including carbon nanomaterials, transition metal-oxides, transition metal-nitrides, transition metal-hydroxides, electronically conducting polymers, and their nanocomposites are discussed in detail. The HSC configurations for attaining enhanced supercapacitor performance as well as strategies to integrate with other microelectronic devices/wearable fabrics are also included.

12.
Nano Lett ; 17(10): 6157-6165, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28945439

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDs) such as molybdenum or tungsten disulfides (MoS2 or WS2) exhibit extremely large in-plane strain limits and unusual optical/electrical properties, offering unprecedented opportunities for flexible electronics/optoelectronics in new form factors. In order for them to be technologically viable building-blocks for such emerging technologies, it is critically demanded to grow/integrate them onto flexible or arbitrary-shaped substrates on a large wafer-scale compatible with the prevailing microelectronics processes. However, conventional approaches to assemble them on such unconventional substrates via mechanical exfoliations or coevaporation chemical growths have been limited to small-area transfers of 2D TMD layers with uncontrolled spatial homogeneity. Moreover, additional processes involving a prolonged exposure to strong chemical etchants have been required for the separation of as-grown 2D layers, which is detrimental to their material properties. Herein, we report a viable strategy to universally combine the centimeter-scale growth of various 2D TMD layers and their direct assemblies on mechanically deformable substrates. By exploring the water-assisted debonding of gold (Au) interfaced with silicon dioxide (SiO2), we demonstrate the direct growth, transfer, and integration of 2D TMD layers and heterostructures such as 2D MoS2 and 2D MoS2/WS2 vertical stacks on centimeter-scale plastic and metal foil substrates. We identify the dual function of the Au layer as a growth substrate as well as a sacrificial layer which facilitates 2D layer transfer. Furthermore, we demonstrate the versatility of this integration approach by fabricating centimeter-scale 2D MoS2/single walled carbon nanotube (SWNT) vertical heterojunctions which exhibit current rectification and photoresponse. This study opens a pathway to explore large-scale 2D TMD van der Waals layers as device building blocks for emerging mechanically deformable electronics/optoelectronics.

13.
Small ; 13(48)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29125720

RESUMEN

Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p-n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.

14.
Nano Lett ; 14(12): 6842-9, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25406013

RESUMEN

Two-dimensional (2D), layered transition metal dichalcogenides (TMDCs) can grow in two different growth directions, that is, horizontal and vertical. In the horizontal growth, 2D TMDC layers grow in planar direction with their basal planes parallel to growth substrates. In the vertical growth, 2D TMDC layers grow standing upright on growth substrates exposing their edge sites rather than their basal planes. The two distinct morphologies present unique materials properties suitable for specific applications, such as horizontal TMDCs for optoelectronics and vertical TMDCs for electrochemical reactions. Precise control of the growth orientation is essential for realizing the true potential of these 2D materials for large-scale, practical applications. In this Letter, we investigate the transition of vertical-to-horizontal growth directions in 2D molybdenum (or tungsten) disulfide and study the underlying growth mechanisms and parameters that dictate such transition. We reveal that the thickness of metal seed layers plays a critical role in determining their growth directions. With thick (>∼ 3 nm) seed layers, the vertical growth is dominant, while the horizontal growth occurs with thinner seed layers. This finding enables the synthesis of novel 2D TMDC heterostructures with anisotropic layer orientations and transport properties. The present study paves a way for developing a new class of 2D TMDCs with unconventional materials properties.

15.
Nano Lett ; 14(7): 4183-8, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24910959

RESUMEN

SnTe is a topological crystalline insulator that possesses spin-polarized, Dirac-dispersive surface states protected by crystal symmetry. Multiple surface states exist on the {100}, {110}, and {111} surfaces of SnTe, with the band structure of surface states depending on the mirror symmetry of a particular surface. Thus, to access surface states selectively, it is critical to control the morphology of SnTe such that only desired crystallographic surfaces are present. Here, we grow SnTe nanostructures using vapor-liquid-solid and vapor-solid growth mechanisms. Previously, SnTe nanowires and nanocrystals have been grown [Saghir et al. Cryst. Growth Des. 2014, 14, 2009-2013; Safdar et al. Cryst. Growth Des. 2014, 14, 2502-2509; Safdar et al. Nano Lett. 2013, 13, 5344-5349; Li et al. Nano Lett. 2013, 13, 5443-5448]. In this report, we demonstrate the synthesis of SnTe nanoplates with lateral dimensions spanning tens of micrometers and thicknesses of a few hundred nanometers. The top and bottom surfaces are either (100) or (111), maximizing topological surface states on these surfaces. Magnetotransport on these SnTe nanoplates shows a high bulk carrier density, consistent with bulk SnTe crystals arising due to defects such as Sn vacancies. In addition, we observe a structural phase transition in these nanoplates from the high-temperature rock salt to a low-temperature rhombohedral structure. For nanoplates with a very high carrier density, we observe a slight upturn in resistance at low temperatures, indicating electron-electron interactions.

16.
Nano Lett ; 13(1): 95-9, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23237412

RESUMEN

Carrier transport characteristics in high-efficiency single-walled carbon nanotubes (SWNTs)/silicon (Si) hybrid solar cells are presented. The solar cells were fabricated by depositing intrinsic p-type SWNT thin-films on n-type Si wafers without involving any high-temperature process for p-n junction formation. The optimized cells showed a device ideality factor close to unity and a record-high power-conversion-efficiency of >11%. By investigating the dark forward current density characteristics with varying temperature, we have identified that the temperature-dependent current rectification originates from the thermally activated band-to-band transition of carriers in Si, and the role of the SWNT thin films is to establish a built-in potential for carrier separation/collection. We have also established that the dominant carrier transport mechanism is diffusion, with minimal interface recombination. This is further supported by the observation of a long minority carrier lifetime of ~34 µs, determined by the transient recovery method. This study suggests that these hybrid solar cells operate in the same manner as single crystalline p-n homojunction Si solar cells.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38949620

RESUMEN

Electronic devices employing two-dimensional (2D) van der Waals (vdW) transition-metal dichalcogenide (TMD) layers as semiconducting channels often exhibit limited performance (e.g., low carrier mobility), in part, due to their high contact resistances caused by interfacing non-vdW three-dimensional (3D) metal electrodes. Herein, we report that this intrinsic contact issue can be efficiently mitigated by forming the 2D/2D in-plane junctions of 2D semiconductor channels seamlessly interfaced with 2D metal electrodes. For this, we demonstrated the selectively patterned conversion of semiconducting 2D PtSe2 (channels) to metallic 2D PtTe2 (electrodes) layers by employing a wafer-scale low-temperature chemical vapor deposition (CVD) process. We investigated a variety of field-effect transistors (FETs) employing wafer-scale CVD-2D PtSe2/2D PtTe2 heterolayers and identified that silicon dioxide (SiO2) top-gated FETs exhibited an extremely high hole mobility of ∼120 cm2 V-1 s-1 at room temperature, significantly surpassing performances with previous wafer-scale 2D PtSe2-based FETs. The low-temperature nature of the CVD method further allowed for the direct fabrication of wafer-scale arrays of 2D PtSe2/2D PtTe2 heterolayers on polyamide (PI) substrates, which intrinsically displayed optical pulse-induced artificial synaptic behaviors. This study is believed to vastly broaden the applicability of 2D TMD layers for next-generation, high-performance electronic devices with unconventional functionalities.

18.
ACS Nano ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950148

RESUMEN

Prevailing over the bottleneck of von Neumann computing has been significant attention due to the inevitableness of proceeding through enormous data volumes in current digital technologies. Inspired by the human brain's operational principle, the artificial synapse of neuromorphic computing has been explored as an emerging solution. Especially, the optoelectronic synapse is of growing interest as vision is an essential source of information in which dealing with optical stimuli is vital. Herein, flexible optoelectronic synaptic devices composed of centimeter-scale tellurium dioxide (TeO2) films detecting and exhibiting synaptic characteristics to broadband wavelengths are presented. The TeO2-based flexible devices demonstrate a comprehensive set of emulating basic optoelectronic synaptic characteristics; i.e., excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), conversion of short-term to long-term memory, and learning/forgetting. Furthermore, they feature linear and symmetric conductance synaptic weight updates at various wavelengths, which are applicable to broadband neuromorphic computations. Based on this large set of synaptic attributes, a variety of applications such as logistic functions or deep learning and image recognition as well as learning simulations are demonstrated. This work proposes a significant milestone of wafer-scale metal oxide semiconductor-based artificial synapses solely utilizing their optoelectronic features and mechanical flexibility, which is attractive toward scaled-up neuromorphic architectures.

19.
Nanotechnology ; 24(11): 115703, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23455354

RESUMEN

We report an in situ examination of individual Si p-n junction nanowires (NWs) using off-axis electron holography (EH) during transmission electron microscopy. The SiNWs were synthesized by chemical vapor deposition with an axial dopant profile from n- to p-type, and then placed inside the transmission electron microscope as a cantilever geometry in contact with a movable Pt probe for in situ biasing measurements during simultaneous EH observations. The phase shift from EH indicates the potential shift between the p- and n-segments to be 1.03 ± 0.17 V due to the built-in voltage. The I-V characteristics of a single SiNW indicate the formation of a Schottky barrier between the NW tip and the movable Pt contact. EH observations show a strong concentration of electric field at this contact, preventing a change in the Si energy bands in the p-n junction region due to the applied bias.

20.
ACS Nano ; 17(20): 20680-20688, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37831937

RESUMEN

Tin monosulfide (SnS) is a promising piezoelectric material with an intrinsically layered structure, making it attractive for self-powered wearable and stretchable devices. However, for practical application purposes, it is essential to improve the output and manufacturing compatibility of SnS-based piezoelectric devices by exploring their large-area synthesis principle. In this study, we report the chemical vapor deposition (CVD) growth of centimeter-scale two-dimensional (2D) SnS layers at temperatures as low as 200 °C, allowing compatibility with processing a range of polymeric substrates. The intrinsic piezoelectricity of 2D SnS layers directly grown on polyamides (PIs) was confirmed by piezoelectric force microscopy (PFM) phase maps and force-current corroborative measurements. Furthermore, the structural robustness of the centimeter-scale 2D SnS layers/PIs allowed for engraving complicated kirigami patterns on them. The kirigami-patterned 2D SnS layer devices exhibited intriguing strain-tolerant piezoelectricity, which was employed in detecting human body motions and generating photocurrents irrespective of strain rate variations. These results establish the great promise of 2D SnS layers for practically relevant large-scale device technologies with coupled electrical and mechanical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA