Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Unfallchirurg ; 124(8): 680-684, 2021 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-34236449

RESUMEN

OBJECTIVE OF SURGERY: High primary stability of the pelvic girdle with full weight bearing. INDICATIONS: Instability and immobility in patients with osteoporotic fractures of the pelvis. CONTRAINDICATIONS: Decubitus ulcers, infections. SURGICAL TECHNIQUE: Minimally invasive posterior locked compression plate 4.5 LCP (locked compression plate, DePuy Synthes, Zuchwil, Switzerland). FOLLOW-UP: Immediate mobilization with full weight bearing, X­ ray control. EVIDENCE: The follow-up examination of a collective of 34 patients showed no implant loosening and a relatively low radiation exposure.


Asunto(s)
Fracturas por Estrés , Fracturas Osteoporóticas , Placas Óseas , Fijación Interna de Fracturas , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/cirugía , Pelvis
2.
J Nanobiotechnology ; 17(1): 98, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530277

RESUMEN

The authors apologized for the unfortunate error in figure during publication of the article and they also explained that some of the solid grey graphs in Fig. 5 are intentionally based on the same data. For 8 different surface makers (CD14, CD73, CD34, CD105, CD19, CD90, CD45, HA-DR) in accordance to the guidelines of the manufacturer a panel of 4 different isotype controls were used, corresponding to 4 different fluorescence channels.

3.
J Nanobiotechnology ; 15(1): 24, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28356160

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) have an inherent migratory capacity towards tumor tissue in vivo. With the future objective to quantify the tumor homing efficacy of MSCs, as first step in this direction we investigated the use of inorganic nanoparticles (NPs), in particular ca. 4 nm-sized Au NPs, for MSC labeling. Time dependent uptake efficiencies of NPs at different exposure concentrations and times were determined via inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: The labeling efficiency of the MSCs was determined in terms of the amount of exocytosed NPs versus the amount of initially endocytosed NPs, demonstrating that at high concentrations the internalized Au NPs were exocytosed over time, leading to continuous exhaustion. While exposure to NPs did not significantly impair cell viability or expression of surface markers, even at high dose levels, MSCs were significantly affected in their proliferation and migration potential. These results demonstrate that proliferation or migration assays are more suitable to evaluate whether labeling of MSCs with certain amounts of NPs exerts distress on cells. However, despite optimized conditions the labeling efficiency varied considerably in MSC lots from different donors, indicating cell specific loading capacities for NPs. Finally, we determined the detection limits of Au NP-labeled MSCs within murine tissue employing ICP-MS and demonstrate the distribution and homing of NP labeled MSCs in vivo. CONCLUSION: Although large amounts of NPs improve contrast for imaging, duration and extend of labeling needs to be adjusted carefully to avoid functional deficits in MSCs. We established an optimized labeling strategy for human MSCs with Au NPs that preserves their migratory capacity in vivo.


Asunto(s)
Rastreo Celular , Oro/química , Células Madre Mesenquimatosas/citología , Nanopartículas del Metal/química , Animales , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Endocitosis , Exocitosis , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula
4.
Lancet ; 383(9913): 238-44, 2014 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-24161821

RESUMEN

BACKGROUND: In 2008, the first transplantation of a tissue-engineered trachea in a human being was done to replace an end-staged left main bronchus with malacia in a 30-year-old woman. We report 5 year follow-up results. METHODS: The patient was followed up approximately every 3 months with multidetector CT scan and bronchoscopic assessment. We obtained mucosal biopsy samples every 6 months for histological, immunohistochemical, and electron microscopy assessment. We also assessed quality of life, respiratory function, cough reflex test, and production and specificity of recipient antibodies against donor human leucocyte antigen. FINDINGS: By 12 months after transplantation, a progressive cicatricial stenosis had developed in the native trachea close to the tissue-engineered trachea anastomosis, which needed repeated endoluminal stenting. However, the tissue-engineered trachea itself remained open over its entire length, well vascularised, completely re-cellularised with respiratory epithelium, and had normal ciliary function and mucus clearance. Lung function and cough reflex were normal. No stem-cell-related teratoma formed and no anti-donor antibodies developed. Aside from intermittent bronchoscopic interventions, the patient had a normal social and working life. INTERPRETATION: These clinical results provide evidence that a tissue-engineering strategy including decellularisation of a human trachea, autologous epithelial and stem-cell culture and differentiation, and cell-scaffold seeding with a bioreactor is safe and promising. FUNDING: European Commission, Knut and Alice Wallenberg Foundation, Swedish Research Council, ALF Medicine.


Asunto(s)
Broncomalacia/cirugía , Ingeniería de Tejidos/métodos , Tráquea/trasplante , Adulto , Broncomalacia/fisiopatología , Broncoscopía , Femenino , Estudios de Seguimiento , Volumen Espiratorio Forzado/fisiología , Humanos , Laringoestenosis/terapia , Microscopía Electrónica , Complicaciones Posoperatorias/terapia , Stents , Tomografía Computarizada por Rayos X , Tráquea/ultraestructura , Estenosis Traqueal/terapia , Capacidad Vital/fisiología
5.
Respiration ; 90(6): 481-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26613253

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a devastating disorder. Despite enormous efforts in clinical research, effective treatment options are lacking, and mortality rates remain unacceptably high. OBJECTIVES: A male patient with severe ARDS showed no clinical improvement with conventional therapies. Hence, an emergent experimental intervention was performed. METHODS: We performed intratracheal administration of autologous peripheral blood-derived mononuclear cells (PBMCs) and erythropoietin (EPO). RESULTS: We found that after 2 days of initial PBMC/EPO application, lung function improved and extracorporeal membrane oxygenation (ECMO) support was reduced. Bronchoscopy and serum inflammatory markers revealed reduced inflammation. Additionally, serum concentration of miR-449a, b, c and miR-34a, a transient upregulation of E-cadherin and associated chromatin marks in PBMCs indicated airway epithelial differentiation. Extracellular vesicles from PBMCs demonstrated anti-inflammatory capacity in a TNF-α-mediated nuclear factor-x03BA;B in vitro assay. Despite improving respiratory function, the patient died of multisystem organ failure on day 38 of ECMO treatment. CONCLUSIONS: This case report provides initial encouraging evidence to use locally instilled PBMC/EPO for treatment of severe refractory ARDS. The observed clinical improvement may partially be due to the anti-inflammatory effects of PBMC/EPO to promote tissue regeneration. Further studies are needed for more in-depth understanding of the underlying mechanisms of in vivo regeneration.


Asunto(s)
Leucocitos Mononucleares/trasplante , Síndrome de Dificultad Respiratoria/terapia , Cadherinas/sangre , Citocinas/sangre , Regulación hacia Abajo , Eritropoyetina/administración & dosificación , Oxigenación por Membrana Extracorpórea , Resultado Fatal , Humanos , Masculino , MicroARNs/sangre , Insuficiencia Multiorgánica/etiología , Factores de Transcripción de la Familia Snail , Factores de Transcripción/sangre , Trasplante Autólogo , Regulación hacia Arriba , Adulto Joven
6.
J Math Biol ; 68(4): 785-813, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23412665

RESUMEN

A mathematical model, in the form of an integro-partial differential equation, is presented to describe the dynamics of cells being deposited, attaching and growing in the form of a monolayer across an adherent surface. The model takes into account that the cells suspended in the media used for the seeding have a distribution of sizes, and that the attachment of cells restricts further deposition by fragmenting the parts of the domain unoccupied by cells. Once attached the cells are assumed to be able to grow and proliferate over the domain by a process of infilling of the interstitial gaps; it is shown that without cell proliferation there is a slow build up of the monolayer but if the surface is conducive to cell spreading and proliferation then complete coverage of the domain by the monolayer can be achieved more rapidly. Analytical solutions of the model equations are obtained for special cases, and numerical solutions are presented for parameter values derived from experiments of rat mesenchymal stromal cells seeded onto thin layers of collagen-coated polyethylene terephthalate electrospun fibers. The model represents a new approach to describing the deposition, attachment and growth of cells over adherent surfaces, and should prove useful for studying the dynamics of the seeding of biomaterials.


Asunto(s)
Adhesión Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Modelos Biológicos , Animales , Proliferación Celular , Análisis Numérico Asistido por Computador , Ratas
7.
Lancet ; 378(9808): 1997-2004, 2011 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-22119609

RESUMEN

BACKGROUND: Tracheal tumours can be surgically resected but most are an inoperable size at the time of diagnosis; therefore, new therapeutic options are needed. We report the clinical transplantation of the tracheobronchial airway with a stem-cell-seeded bioartificial nanocomposite. METHODS: A 36-year-old male patient, previously treated with debulking surgery and radiation therapy, presented with recurrent primary cancer of the distal trachea and main bronchi. After complete tumour resection, the airway was replaced with a tailored bioartificial nanocomposite previously seeded with autologous bone-marrow mononuclear cells via a bioreactor for 36 h. Postoperative granulocyte colony-stimulating factor filgrastim (10 µg/kg) and epoetin beta (40,000 UI) were given over 14 days. We undertook flow cytometry, scanning electron microscopy, confocal microscopy epigenetics, multiplex, miRNA, and gene expression analyses. FINDINGS: We noted an extracellular matrix-like coating and proliferating cells including a CD105+ subpopulation in the scaffold after the reseeding and bioreactor process. There were no major complications, and the patient was asymptomatic and tumour free 5 months after transplantation. The bioartificial nanocomposite has patent anastomoses, lined with a vascularised neomucosa, and was partly covered by nearly healthy epithelium. Postoperatively, we detected a mobilisation of peripheral cells displaying increased mesenchymal stromal cell phenotype, and upregulation of epoetin receptors, antiapoptotic genes, and miR-34 and miR-449 biomarkers. These findings, together with increased levels of regenerative-associated plasma factors, strongly suggest stem-cell homing and cell-mediated wound repair, extracellular matrix remodelling, and neovascularisation of the graft. INTERPRETATION: Tailor-made bioartificial scaffolds can be used to replace complex airway defects. The bioreactor reseeding process and pharmacological-induced site-specific and graft-specific regeneration and tissue protection are key factors for successful clinical outcome. FUNDING: European Commission, Knut and Alice Wallenberg Foundation, Swedish Research Council, StratRegen, Vinnova Foundation, Radiumhemmet, Clinigene EU Network of Excellence, Swedish Cancer Society, Centre for Biosciences (The Live Cell imaging Unit), and UCL Business.


Asunto(s)
Neoplasias de los Bronquios/cirugía , Leucocitos Mononucleares/trasplante , Ingeniería de Tejidos/métodos , Andamios del Tejido , Neoplasias de la Tráquea/cirugía , Adulto , Reactores Biológicos , Prótesis Vascular , Trasplante de Médula Ósea , Broncoscopía , Carcinoma Mucoepidermoide/cirugía , Proliferación Celular , Epoetina alfa , Eritropoyetina/uso terapéutico , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , MicroARNs/metabolismo , Nanocompuestos/química , Recurrencia Local de Neoplasia/cirugía , Neovascularización Fisiológica , Tereftalatos Polietilenos , Proteínas Recombinantes/uso terapéutico , Regeneración , Trasplante Autólogo
8.
Transpl Int ; 25(4): 369-82, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22248229

RESUMEN

Mesenchymal stromal cells (MSCs), a rare heterogeneous subset of pluripotent stromal cells that can be easily isolated from different adult tissues, in vitro expanded and differentiated into multiple lineages, are immune privileged and, more important, display immunomodulatory capacities. Because of this, they are the preferred cell source in tissue-engineered replacements, not only in autogeneic conditions, where they do not evoke any immune response, but especially in the setting of allogeneic organ and tissue replacements. However, more preclinical and clinical studies are requested to completely understand MSC's immune biology and possible clinical applications. We herein review the immunogenicity and immunomodulatory properties of MSCs, their possible mechanisms and potential clinical use for tissue-engineered organ and tissue replacement.


Asunto(s)
Células Madre Mesenquimatosas/inmunología , Ingeniería de Tejidos/métodos , Inmunidad Adaptativa/inmunología , Adulto , Animales , Linfocitos B/inmunología , Diferenciación Celular , Células Dendríticas/fisiología , Humanos , Tolerancia Inmunológica/fisiología , Inmunidad Innata/inmunología , Factores Inmunológicos , Células Asesinas Naturales/fisiología , Regeneración/fisiología , Linfocitos T/inmunología
9.
Br Med Bull ; 99: 169-87, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21725086

RESUMEN

INTRODUCTION: Despite treatment advances in many diseases of the respiratory system, outcome remains poor. SOURCES OF DATA: This systematic review (PubMed and Ovid) 'analyses stem cell (SC)-based therapy and regenerative medicine (RM) approaches as potential novel strategies for diseases of the respiratory system. Current preclinical research and ongoing clinical trials are presented and their potential clinical impact and routine application discussed. AREAS OF AGREEMENT: These approaches may represent a promising alternative therapy for otherwise irreversible respiratory diseases. Several experimental and initial clinical data now exist. AREAS OF CONTROVERSY: Type of SC, limits of tissue engineering, route of delivery, cell behaviour (differentiation, growth, co-stimulation or immunomodulation) and interaction with the human microenvironment upon implantation. GROWING POINTS: Investigating underlying pathways and mechanisms. Evaluating gene, epigenetic and protein regulation. Interaction with the environment under diseased and healthy conditions. Detecting approaches with significant scientific and clinical impact. AREAS TIMELY FOR DEVELOPING RESEARCH: The potential capacity of SC-based therapy and RM should be carefully investigated before their translation into clinical practice.


Asunto(s)
Fenómenos Fisiológicos Celulares , Terapia Genética/métodos , Medicina Regenerativa/métodos , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/patología , Enfermedades Respiratorias/terapia , Trasplante de Células Madre/métodos , Ingeniería de Tejidos/métodos , Ensayos Clínicos como Asunto , Terapia Genética/tendencias , Humanos , Regeneración/fisiología , Medicina Regenerativa/tendencias , Sistema Respiratorio/fisiopatología , Enfermedades Respiratorias/patología , Enfermedades Respiratorias/fisiopatología , Investigación con Células Madre , Trasplante de Células Madre/tendencias , Ingeniería de Tejidos/tendencias
10.
Eur J Trauma Emerg Surg ; 47(1): 37-45, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33104870

RESUMEN

PURPOSE: Fragility fractures of the pelvis (FFP) are common in older patients. We evaluated the clinical outcome of using a minimally invasive posterior locked compression plate (MIPLCP) as therapeutic alternative. METHODS: 53 Patients with insufficiency fractures of the posterior pelvic ring were treated with MIPLCP when suffering from persistent pain and immobility under conservative treatment. After initial X-ray, CT-scans of the pelvis were performed. In some cases an MRI was also performed to detect occult fractures. Postoperatively patients underwent conventional X-ray controls. Data were retrospectively analyzed for surgical and radiation time, complication rate, clinical outcome and compared to the literature. RESULTS: Patients (average age 79.1 years) underwent surgery with operation time of 52.3 min (SD 13.9), intra-operative X-ray time of 9.42 s (SD 9.6), mean dose length product of 70.1 mGycm (SD 57.9) and a mean hospital stay of 21.2 days (SD 7.7). 13% patients (n = 7) showed surgery-related complications, such as wound infection, prolonged wound secretion, irritation of the sacral root or clinically inapparent screw malpositioning. 17% (n = 9) showed postoperative complications (one patient died due to pneumonia 24 days after surgery, eight patients developed urinal tract infections). 42 patients managed to return to previous living situation. 34 were followed-up after a mean period of 31.5 (6-90) months and pain level at post-hospital examination of 2.4 (VAS) with an IOWA Pelvic Score of 85.6 (55-99). CONCLUSION: We showed that MIPLCP osteosynthesis is a safe surgical alternative in patients with FFP 3 and FFP 4. This treatment is another way of maintaining a high level of stability in the osteoporotic pelvic ring with a relatively low complication rate, low radiation and moderate operation time and a good functional outcome.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos , Fracturas Osteoporóticas/cirugía , Huesos Pélvicos/lesiones , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Tempo Operativo , Fracturas Osteoporóticas/diagnóstico por imagen , Dimensión del Dolor , Huesos Pélvicos/diagnóstico por imagen , Complicaciones Posoperatorias , Estudios Retrospectivos
11.
Lancet ; 372(9655): 2023-30, 2008 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-19022496

RESUMEN

BACKGROUND: The loss of a normal airway is devastating. Attempts to replace large airways have met with serious problems. Prerequisites for a tissue-engineered replacement are a suitable matrix, cells, ideal mechanical properties, and the absence of antigenicity. We aimed to bioengineer tubular tracheal matrices, using a tissue-engineering protocol, and to assess the application of this technology in a patient with end-stage airway disease. METHODS: We removed cells and MHC antigens from a human donor trachea, which was then readily colonised by epithelial cells and mesenchymal stem-cell-derived chondrocytes that had been cultured from cells taken from the recipient (a 30-year old woman with end-stage bronchomalacia). This graft was then used to replace the recipient's left main bronchus. FINDINGS: The graft immediately provided the recipient with a functional airway, improved her quality of life, and had a normal appearance and mechanical properties at 4 months. The patient had no anti-donor antibodies and was not on immunosuppressive drugs. INTERPRETATION: The results show that we can produce a cellular, tissue-engineered airway with mechanical properties that allow normal functioning, and which is free from the risks of rejection. The findings suggest that autologous cells combined with appropriate biomaterials might provide successful treatment for patients with serious clinical disorders.


Asunto(s)
Broncomalacia/fisiopatología , Condrocitos/citología , Ingeniería de Tejidos/métodos , Tráquea/trasplante , Adulto , Broncomalacia/terapia , Cadáver , Femenino , Humanos , Periodo Posoperatorio , Pruebas de Función Respiratoria , Tráquea/citología
12.
Cell Transplant ; 18(3): 319-31, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19558780

RESUMEN

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent cells characterized by their self-renewal and differentiation potential. Accumulating clinical and preclinical evidence indicate MSCs are a promising cell source for regenerative medical therapies. However, undesirable immortalization, spontaneous transformation, and tumorigenic potential from long-term cultured MSCs have been reported in human and mouse. We report rat MSCs isolated from young donors could undergo transformation in early passage culture. We aimed to characterize the transformed population and determine their therapeutic effects after intracardiac transplantation in the infarcted myocardium. MSCs were isolated from bone marrow of Lewis rats according to standard protocols and cultured under standard conditions. Phenotype of growing cells was assessed by flow cytometry. Following acute myocardial infarction in rats, cells were delivered by intracardiac injection. Cardiac functions were assessed by pressure-volume loops. Infarction size and pathologic effects were evaluated after 6 weeks. The abnormal colonies were detected in culture as early at passage 3. They were noted to appear as distinctly different morphology from typical MSCs, which changed from a normal elongated spindle shape to a compact abnormal morphology. They exhibited rapid cell proliferation. Some subclones lost contact inhibition of cell division and formed multilayer aggregates. Chromosomal instability was detected. They were devoid of surface markers CD29, CD44, CD90, and CD117. Furthermore, there was no significant improvement on infarction size and cardiac function 6 weeks after cell transplantation. Our study highlights the need for establishment of biosafety criteria in regulating culture- expanded MSCs to achieve the full clinical therapeutic benefits.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/patología , Miocardio/patología , Animales , Biomarcadores/metabolismo , Línea Celular Transformada , Células Cultivadas , Aberraciones Cromosómicas , Cromosomas de los Mamíferos/metabolismo , Pruebas de Función Cardíaca , Inmunohistoquímica , Inmunofenotipificación , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Ratas
14.
Artif Organs ; 32(11): 885-90, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18959682

RESUMEN

The aim of this study was to determine the optimal positive end-expiratory pressure (PEEP) required during extracorporeal lung membrane support (interventional lung assist [iLA]; Novalung GmbH, Hechingen, Germany). Twenty healthy pigs were initially (4 h) mechanically ventilated with a tidal volume (V(T)) of 10 mL/Kg, respiratory rate (RR) of 20 breaths/min, PEEP of 5 cm H(2)O, and fraction of inspired O(2) (FiO(2)) of 1.0. Thereafter, the iLAs were placed arteriovenously transfemorally and settings reduced to reach near static ventilation (V(T) < or = 2 mL/Kg, RR 4 breaths/min, PEEP of 5, FiO(2) 1.0). Then, animals were assigned to four study groups evaluating 5 cm H(2)O increasing levels of PEEP for 8 h. Gas exchanges with PEEP < or = 10 cm H(2)O were significantly worse than those with PEEP > 12 cm H(2)O, and this without hemodynamical imbalance. This study suggests that the iLA may provide adequate gas exchange during static ventilation only with PEEP levels > 10 cm H(2)O, and this without pulmonary or systemic hemodynamic imbalance.


Asunto(s)
Órganos Artificiales , Oxigenación por Membrana Extracorpórea/instrumentación , Pulmón/fisiología , Respiración con Presión Positiva , Animales , Análisis de los Gases de la Sangre , Femenino , Hemodinámica , Mediciones del Volumen Pulmonar , Masculino , Intercambio Gaseoso Pulmonar , Porcinos , Volumen de Ventilación Pulmonar , Ventiladores Mecánicos
16.
Oncotarget ; 8(52): 89580-89594, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29163772

RESUMEN

The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1high thymomas and TCs.

17.
ACS Nano ; 11(3): 2313-2381, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28290206

RESUMEN

The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Portadores de Fármacos/química , Humanos , Nanotecnología , Neoplasias/patología , Tamaño de la Partícula
18.
Curr Stem Cell Res Ther ; 11(8): 666-675, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26423295

RESUMEN

Regenerative medicine is a multidisciplinary field where continued progress relies on the incorporation of a diverse set of technologies from a wide range of disciplines within medicine, science and engineering. This review describes how one such technique, mathematical modelling, can be utilised to improve the tissue engineering of organs and stem cell therapy. Several case studies, taken from research carried out by our group, ACTREM, demonstrate the utility of mechanistic mathematical models to help aid the design and optimisation of protocols in regenerative medicine.


Asunto(s)
Modelos Biológicos , Especificidad de Órganos , Trasplante de Células Madre , Ingeniería de Tejidos/métodos , Animales , Humanos , Medicina Regenerativa , Andamios del Tejido/química
19.
Sci Total Environ ; 568: 819-828, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27306826

RESUMEN

The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids may change their physicochemical properties along their life cycle, and appropriate characterization is required during the different stages.


Asunto(s)
Membrana Celular/metabolismo , Coloides/análisis , Endocitosis/fisiología , Nanopartículas/análisis , Técnicas de Cultivo de Célula , Células Cultivadas , Coloides/química , Coloides/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Propiedades de Superficie
20.
Biomaterials ; 77: 320-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26618750

RESUMEN

The currently available surgical options to repair the diaphragm are associated with significant risks of defect recurrence, lack of growth potential and restored functionality. A tissue engineered diaphragm has the potential to improve surgical outcomes for patients with congenital or acquired disorders. Here we show that decellularized diaphragmatic tissue reseeded with bone marrow mesenchymal stromal cells (BM-MSCs) facilitates in situ regeneration of functional tissue. A novel bioreactor, using simultaneous perfusion and agitation, was used to rapidly decellularize rat diaphragms. The scaffolds retained architecture and mechanical properties and supported cell adhesion, proliferation and differentiation. Biocompatibility was further confirmed in vitro and in vivo. We replaced 80% of the left hemidiaphragm with reseeded diaphragmatic scaffolds. After three weeks, transplanted animals gained 32% weight, showed myography, spirometry parameters, and histological evaluations similar to native rats. In conclusion, our study suggested that reseeded decellularized diaphragmatic tissue appears to be a promising option for patients in need of diaphragmatic reconstruction.


Asunto(s)
Diafragma/trasplante , Trasplante de Células Madre Mesenquimatosas/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Implantes Absorbibles , Aloinjertos , Animales , Reactores Biológicos , Adhesión Celular , Diferenciación Celular , Diafragma/irrigación sanguínea , Diafragma/diagnóstico por imagen , Diafragma/inmunología , Electromiografía , Supervivencia de Injerto , Hernias Diafragmáticas Congénitas , Macrófagos/inmunología , Masculino , Neovascularización Fisiológica , Radiografía , Ratas , Ratas Endogámicas Lew , Ingeniería de Tejidos/instrumentación , Trasplante Heterotópico , Trasplantes/irrigación sanguínea , Trasplantes/inmunología , Trasplantes/fisiología , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA