Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Genom ; 8(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35876490

RESUMEN

The COVID-19 pandemic continues to expand globally, with case numbers rising in many areas of the world, including the Eastern Mediterranean Region. Lebanon experienced its largest wave of COVID-19 infections from January to April 2021. Limited genomic surveillance was undertaken, with just 26 SARS-CoV-2 genomes available for this period, nine of which were from travellers from Lebanon detected by other countries. Additional genome sequencing is thus needed to allow surveillance of variants in circulation. In total, 905 SARS-CoV-2 genomes were sequenced using the ARTIC protocol. The genomes were derived from SARS-CoV-2-positive samples, selected retrospectively from the sentinel COVID-19 surveillance network, to capture diversity of location, sampling time, sex, nationality and age. Although 16 PANGO lineages were circulating in Lebanon in January 2021, by February there were just four, with the Alpha variant accounting for 97 % of samples. In the following 2 months, all samples contained the Alpha variant. However, this had changed dramatically by June and July 2021, when all samples belonged to the Delta variant. This study documents a ten-fold increase in the number of SARS-CoV-2 genomes available from Lebanon. The Alpha variant, first detected in the UK, rapidly swept through Lebanon, causing the country's largest wave to date, which peaked in January 2021. The Alpha variant was introduced to Lebanon multiple times despite travel restrictions, but the source of these introductions remains uncertain. The Delta variant was detected in Gambia in travellers from Lebanon in mid-May, suggesting community transmission in Lebanon several weeks before this variant was detected in the country. Prospective sequencing in June/July 2021 showed that the Delta variant had completely replaced the Alpha variant in under 6 weeks.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genoma Viral/genética , Humanos , Líbano/epidemiología , Pandemias , Filogenia , Estudios Prospectivos , Estudios Retrospectivos , SARS-CoV-2/genética
2.
J Neurosci ; 30(24): 8151-61, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20554865

RESUMEN

Multiple synaptic vesicle (SV) retrieval modes exist in central nerve terminals to maintain a continual supply of SVs for neurotransmission. Two such modes are clathrin-mediated endocytosis (CME), which is dominant during mild neuronal activity, and activity-dependent bulk endocytosis (ADBE), which is dominant during intense neuronal activity. However, little is known about how activation of these SV retrieval modes impact the replenishment of the total SV recycling pool and the pools that reside within it, the readily releasable pool (RRP) and reserve pool. To address this question, we examined the replenishment of all three SV pools by triggering these SV retrieval modes during both high- and low-intensity stimulation of primary rat neuronal cultures. SVs generated by CME and ADBE were differentially labeled using the dyes FM1-43 and FM2-10, and their replenishment of specific SV pools was quantified using stimulation protocols that selectively depleted each pool. Our studies indicate that while the RRP was replenished by CME-generated SVs, ADBE provided additional SVs to increase the capacity of the reserve pool. Morphological analysis of the uptake of the fluid phase marker horseradish peroxidase corroborated these findings. The differential replenishment of specific SV pools by independent SV retrieval modes illustrates how previously experienced neuronal activity impacts the capability of central nerve terminals to respond to future stimuli.


Asunto(s)
Clatrina/farmacología , Endocitosis/efectos de los fármacos , Terminaciones Nerviosas/fisiología , Neuronas/ultraestructura , Vesículas Sinápticas/fisiología , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Células Cultivadas , Cerebelo/citología , Estimulación Eléctrica/métodos , Femenino , Proteínas Fluorescentes Verdes/genética , Peroxidasa de Rábano Silvestre/metabolismo , Masculino , Microscopía Electrónica de Transmisión/métodos , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/ultraestructura , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/ultraestructura , Factores de Tiempo , Transfección/métodos
3.
Nat Cell Biol ; 5(8): 701-10, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12855954

RESUMEN

Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin I on Ser 774 and Ser 778 in vitro, which are identical to its endogenous phosphorylation sites in vivo. Cdk5 antagonists and expression of dominant-negative Cdk5 block phosphorylation of dynamin I, but not of amphiphysin or AP180, in nerve terminals and inhibit SVE. Thus Cdk5 has an essential role in SVE and is the first dephosphin kinase identified in nerve terminals.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Endocitosis/fisiología , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Secuencias de Aminoácidos , Animales , Quinasa 5 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , Dinamina I/genética , Dinamina I/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Proteína Quinasa C-alfa , Purinas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Roscovitina , Serina/metabolismo , Ovinos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sinaptosomas/química , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
4.
Biochem J ; 374(Pt 2): 453-61, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12786601

RESUMEN

The hormonally regulated Ca(2+)-dependent enzyme, cytosolic phospholipase A(2) (cPLA(2)) is activated by a range of inflammatory stimuli. Tumour necrosis factor-alpha (TNF) is one of the first known stimuli for cPLA(2) but it is not known whether both TNF receptor subtypes are involved in activating the lipase. In the present study, we show for the first time that both type I 55 kDa TNFR (TNFR1) and type II 75 kDa TNFR (TNFR2) stimulate cPLA(2) enzyme, but with distinct signalling mechanisms. TNFR1 activates mitogen-activated protein kinase (MAPK) and p38MAPK. TNFR1 then phosphorylates and activates cPLA(2) in a MAPK-dependent fashion. Furthermore, TNFR1 causes the translocation and caspase-dependent proteolysis of cPLA(2) as part of its activation profile. TNFR2, on the other hand, does not cause the phosphorylation of cPLA(2) as it does not activate MAPK or p38MAPK, but instead activates cPLA(2) by causing its translocation to plasma membrane and perinuclear subcellular regions. TNFR2 activation causes a delayed, slight increase in [Ca(2+)](i) of <50 nM that may contribute towards the translocation and activation of cPLA(2). Therefore both TNF receptor subtypes play a role in cPLA(2) activation, but by means of separate signal-transduction pathways.


Asunto(s)
Antígenos CD/fisiología , Citosol/enzimología , Endopeptidasas/metabolismo , Fosfolipasas A/metabolismo , Receptores del Factor de Necrosis Tumoral/fisiología , Ácido Araquidónico/metabolismo , Calcio/metabolismo , Calcio/fisiología , Citosol/ultraestructura , Activación Enzimática/fisiología , Células HeLa , Humanos , Hidrólisis , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Fosfolipasas A/fisiología , Fosfolipasas A2 , Fosforilación , Isoformas de Proteínas/fisiología , Transporte de Proteínas , Receptores Tipo I de Factores de Necrosis Tumoral , Receptores Tipo II del Factor de Necrosis Tumoral , Células Tumorales Cultivadas
5.
Biochem J ; 366(Pt 1): 145-55, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11996667

RESUMEN

The activation of the extracellular signal-regulated kinases (ERKs) by tumour necrosis factor-alpha (TNF) receptors (TNFRs) is an integral part of the cytokine's pleiotropic cellular responses. Here we report differences in the caspase sensitivity and TNFR subtype activation of members of the ERK family. Inhibition in HeLa cells of caspase function by pharmacological inhibitors or the expression of CrmA (cytokine response modifier A), a viral modifier protein, blocks TNF-induced apoptosis or caspase-dependent protein kinase Cdelta and poly(ADP-ribose) polymerase protein degradation. TNFR1- or TNFR2-stimulated c-Jun N-terminal kinase (JNK) activity was attenuated in cells in which caspase activity was inhibited either by pharmacological blockers or CrmA expression. Both TNFR1- and TNFR2-stimulated JNK activity was caspase-sensitive; however, only TNFR1 was capable of stimulating p42/44 mitogen-activated protein kinase (MAPK) and p38 MAPK activities. TNFR1-stimulated p42/44 MAPK and p38 MAPK activities were insensitive to pharmacological caspase inhibition or CrmA. These findings were supported when measuring TNF-induced cytosolic phospholipase A(2) activation, which is a downstream target for MAPK and p38 MAPK. Profiling caspase enzymes activated by TNF in HeLa cells showed sequential caspase-8, -3, -7, -6 and -9 activation, with their inhibition characteristics suggesting a role for caspase-3 and/or caspase-6 in modulating JNK activity. Taken together these results show delineated ERK-activation pathways employed by TNFR subtypes.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anisomicina/farmacología , Western Blotting , Caspasa 3 , Caspasa 6 , Caspasa 7 , Caspasa 8 , Caspasa 9 , Muerte Celular , Separación Celular , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Células HeLa , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Sistema de Señalización de MAP Quinasas , Microscopía Confocal , Microscopía Fluorescente , Fosfolipasas A/metabolismo , Fosforilación , Transducción de Señal , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA