Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(10): 2628-2645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491850

RESUMEN

Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.


Asunto(s)
Forminas , Transducción de Señal , Humanos , Animales , Forminas/metabolismo , Transducción de Señal/fisiología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Complicaciones de la Diabetes/metabolismo , Neuropatías Diabéticas/metabolismo
2.
Eur J Neurosci ; 57(10): 1642-1656, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37070486

RESUMEN

This review focuses on receptor for advanced glycation endproducts/diaphonous related formin 1 (RAGE/Diaph1) interaction as a modulator of actin cytoskeleton dynamics in peripheral nervous system (PNS) in diabetes. Deciphering the complex molecular interactions between RAGE and Diaph1 is crucial in expanding our understanding of diabetic length dependent neuropathy (DLDN). DLDN is a common neurological disorder in patients with diabetes. It is well known that actin cytoskeletal homeostasis is disturbed during DLDN. Thus, we review the current status of knowledge about RAGE/Diaph1 impact on actin cytoskeletal malfunctions in PNS and DLDN progression in diabetes. We also survey studies about small molecules that may block RAGE/Diaph1 axis and thus inhibit the progression of DLDN. Finally, we explore examples of cytoskeletal long-non coding RNAs (lncRNAs) currently unrelated to DLDN, to discuss their potential role in this disease. Most recent studies indicated that lncRNAs have a great potential in many research areas, including RAGE/Diaph1 axis as well as DLDN. Altogether, this review is aimed at giving us an insight into the involvement of cytoskeletal lncRNAs in DLDN.


Asunto(s)
Hiperglucemia , ARN Largo no Codificante , Humanos , Transducción de Señal , Actinas , Receptor para Productos Finales de Glicación Avanzada , Citoesqueleto de Actina/metabolismo , Sistema Nervioso Periférico/metabolismo , Forminas/metabolismo
3.
Neuropathology ; 43(1): 84-94, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35915909

RESUMEN

Type 1 diabetes (T1D) may affect the peripheral nervous system and alter the expression of proteins contributing to inflammation and cellular cytoskeleton dysfunction, in most cases leading to the development of diabetic length-dependent neuropathy (DLDN). In the present study, we performed immunohistochemistry (IHC) to probe the expression of the receptor for advanced glycation end products (RAGE); its key ligands, high-mobility group box 1 (HMGB1), S100 calcium-binding protein B (S100B), and carboxymethyl-lysine (CML - advanced glycation end products (AGE)); and its cytoplasmic tail-binding partner, diaphanous related formin 1 (DIAPH1) and associated molecules, beta-actin (ACTB) and profilin 1 (PFN1) proteins in sciatic nerves harvested from seven-month old FVB/OVE26 mice with genetically-mediated T1D. We found that the amount of RAGE, HMGB1, and S100B proteins was elevated in diabetic vs the non-diabetic groups, while the amount of DIAPH1, ACTB, as well as PFN1 proteins did not differ between these groups. Moreover, our data revealed linear dependence between RAGE and HMGB1 proteins. Interaction criss-cross of selected sets of proteins in the sciatic nerve revealed that there were connected in a singular network. Our results indicate that T1D may alter expression patterns of RAGE axis proteins and thus contribute to DLDN.


Asunto(s)
Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Proteína HMGB1 , Ratones , Animales , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteína HMGB1/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Nervio Ciático
4.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108760

RESUMEN

Epilepsy, with about 70 million affected people worldwide, is one of the biggest challenges of medicine today. It is estimated that about one-third of epileptic patients receive inadequate treatment. Inositols have proved effective in many disorders; hence, in the current study, we tested potential antiepileptic properties of scyllo-inositol (SCI)-one of the most common commercially available inositols-in zebrafish larvae with pentylenetetrazol-induced seizures. First, we studied the general effect of SCI on zebrafish motility, and then we tested SCI antiepileptic properties over short (1 h) and long (120 h) exposure protocols. Our results demonstrated that SCI alone does not reduce zebrafish motility regardless of the dose. We also observed that short-term exposure to SCI groups reduced PTZ-treated larva motility compared to controls (p < 0.05). In contrast, prolonged exposure did not produce similar results, likely due to the insufficient concentration of SCI given. Our results highlight the potential of SCI use in epilepsy treatment and warrant further clinical studies with inositols as potential seizure-reducing drugs.


Asunto(s)
Anticonvulsivantes , Epilepsia , Animales , Anticonvulsivantes/efectos adversos , Pentilenotetrazol/farmacología , Pez Cebra , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Larva
5.
Polim Med ; 53(2): 105-110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38112253

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder with largely unknown pathogenesis and no effective cure. It is believed that several, not mutually exclusive mechanisms contribute to the pathogenesis and progression of this disease, including, among others, elevated oxidative stress, excitotoxicity, increased neuroinflammation, and protein aggregation. Receptor for advanced glycation end products (RAGE) is a part of immunoglobulin superfamily; it is believed to participate in ALS pathogenesis. OBJECTIVES: Our previous studies on ALS demonstrated that RAGE is likely one of the key players in ALS, acting on its own and in tandem with its oxidative stress and pro-inflammatory ligands, such as advanced glycation end products (AGEs) or advanced oxidation protein products (AOPPs). In this study, based on our previous results, we aimed to establish blood levels of soluble RAGE, AGE and AOPP in ALS patients. MATERIAL AND METHODS: Forty-six coded and anonymized surplus plasma samples from ALS patients and non-neurological control were used in the study. The plasma levels of RAGE, AGE and AOPP were measured using enzyme-linked immunosorbent assay (ELISA) commercially available kits. Statistical evaluation of data was performed using one-way non-parametric analysis of variance (ANOVA) with Kruskal-Wallis post hoc test. RESULTS: Our results revealed a decline in soluble RAGE level, concurrent with an increase in the levels of AGEs and AOPPs in blood samples from ALS patients, signifying a loss of neuroprotective form of RAGE and a simultaneous increase in AGE and AOPP production and uptake at the early stage of the disease. CONCLUSIONS: The results obtained from our study indicate that further longitudinal study of RAGE, AGE and AOPP levels would be beneficial, outlining the dynamics between RAGE and its ligand levels as the disease progresses, and making them valuable diagnostic tools and potential therapeutic targets.


Asunto(s)
Productos Avanzados de Oxidación de Proteínas , Esclerosis Amiotrófica Lateral , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Productos Avanzados de Oxidación de Proteínas/metabolismo , Estudios Longitudinales , Estrés Oxidativo
6.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35216298

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive degeneration of upper and lower motor neurons that causes paralysis and muscle atrophy. The pathogenesis of the disease is still not elucidated. Receptor for Advanced Glycation End Product (RAGE) is a major component of the innate immune system and has implications in ALS pathogenesis. Multiple studies suggest the role of RAGE and its ligands in ALS. RAGE and its ligands are overexpressed in human and murine ALS motor neurons, astrocytes, and microglia. Here, we demonstrated the expression of RAGE and its ligands during the progression of the disease in the transgenic SOD1 G93A mouse lumbar spinal cord. We observed the highest expression of HMGB1 and S100b proteins at ALS onset. Our results highlight the potential role of RAGE and its ligands in ALS pathogenesis and suggest that some of the RAGE ligands might be used as biomarkers in early ALS diagnosis and potentially be useful in targeted therapeutic interventions at the early stage of this devastating disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Receptor para Productos Finales de Glicación Avanzada , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
7.
Eur J Neurosci ; 54(6): 5982-5999, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34449932

RESUMEN

Neuropathy, or dysfunction of peripheral nerve, is one of the most common neurological manifestation in patients with diabetes mellitus (DM). DM is typically associated with a hyperglycaemic milieu, which promotes non-enzymatic glycation of proteins. Proteins with advanced glycation are known to engage a cell-surface receptor called the receptor for advanced glycation end products (RAGE). Thus, it is reasonable to assume that RAGE and its associated molecule-mediated cellular signalling may contribute to DM-induced symmetrical axonal (length-dependent) neuropathy. Of particular interest is diaphanous related formin 1 (DIAPH1), a cytoskeletal organizing molecule, which interacts with the cytosolic domain of RAGE and whose dysfunction may precipitate axonopathy/neuropathy. Indeed, it has been demonstrated that both RAGE and DIAPH1 are expressed in the motor and sensory fibres of nerve harvested from DM animal models. Although the detailed molecular role of RAGE and DIAPH1 in diabetic neurological complications remains unclear, here we will discuss available evidence of their involvement in peripheral diabetic neuropathy. Specifically, we will discuss how a hyperglycaemic environment is not only likely to elevate advanced glycation end products (ligands of RAGE) and induce a pro-inflammatory environment but also alter signalling via RAGE and DIAPH1. Further, hyperglycaemia may regulate epigenetic mechanisms that interacts with RAGE signalling. We suggest the cumulative effect of hyperglycaemia on RAGE-DIAPH1-mediated signalling may be disruptive to axonal cytoskeletal organization and transport and is therefore likely to play a key role in pathogenesis of diabetic symmetrical axonal neuropathy.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Neuropatías Diabéticas , Animales , Forminas , Humanos , Ligandos , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal
8.
Biochem Biophys Res Commun ; 559: 92-98, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33933994

RESUMEN

Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles (SV) and released at the synaptic active zone (AZ). While in recent years major progress has been made in unraveling the molecular machinery responsible for SV docking, fusion and exocytosis, the mechanisms governing AZ protein and SV trafficking through axons still remain unclear. Here, we performed stop-flow nerve ligation to examine axonal trafficking of endogenous AZ and SV proteins. Rat sciatic nerves were collected 1 h, 3 h and 8 h post ligation and processed for immunohistochemistry and electron microscopy. First, we followed the transport of an integral synaptic vesicle protein, SV2A and a SV-associated protein involved in SV trafficking, Rab3a, and observed that while SV2A accumulated on both sides of ligation, Rab3a was only noticeable in the proximal segment of the ligated nerve indicating that only SV trans-membrane protein SV2A displayed a bi-directional axonal transport. We then demonstrate that multiple AZ proteins accumulate rapidly on either side of the ligation with a timescale similar to that of SV2A. Overall, our data uncovers an unexpected robust bi-directional, coordinated -trafficking of SV and AZ proteins in peripheral nerves. This implies that pathological disruption of axonal trafficking will not only impair trafficking of newly synthesized proteins to the synapse but will also affect retrograde transport, leading to neuronal dysfunction and likely neurodegeneration.


Asunto(s)
Transporte Axonal , Proteínas del Tejido Nervioso/metabolismo , Nervios Periféricos/fisiología , Transporte de Proteínas , Vesículas Sinápticas/metabolismo , Animales , Masculino , Ratas Sprague-Dawley , Transmisión Sináptica
9.
J Neuroinflammation ; 18(1): 139, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130712

RESUMEN

BACKGROUND: Burgeoning evidence highlights seminal roles for microglia in the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). The receptor for advanced glycation end products (RAGE) binds ligands relevant to ALS that accumulate in the diseased spinal cord and RAGE has been previously implicated in the progression of ALS pathology. METHODS: We generated a novel mouse model to temporally delete Ager from microglia in the murine SOD1G93A model of ALS. Microglia Ager deficient SOD1G93A mice and controls were examined for changes in survival, motor function, gliosis, motor neuron numbers, and transcriptomic analyses of lumbar spinal cord. Furthermore, we examined bulk-RNA-sequencing transcriptomic analyses of human ALS cervical spinal cord. RESULTS: Transcriptomic analysis of human cervical spinal cord reveals a range of AGER expression in ALS patients, which was negatively correlated with age at disease onset and death or tracheostomy. The degree of AGER expression related to differential expression of pathways involved in extracellular matrix, lipid metabolism, and intercellular communication. Microglia display increased RAGE immunoreactivity in the spinal cords of high AGER expressing patients and in the SOD1G93A murine model of ALS vs. respective controls. We demonstrate that microglia Ager deletion at the age of symptomatic onset, day 90, in SOD1G93A mice extends survival in male but not female mice. Critically, many of the pathways identified in human ALS patients that accompanied increased AGER expression were significantly ameliorated by microglia Ager deletion in male SOD1G93A mice. CONCLUSIONS: Our results indicate that microglia RAGE disrupts communications with cell types including astrocytes and neurons, intercellular communication pathways that divert microglia from a homeostatic to an inflammatory and tissue-injurious program. In totality, microglia RAGE contributes to the progression of SOD1G93A murine pathology in male mice and may be relevant in human disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Caracteres Sexuales , Superóxido Dismutasa-1/genética , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor para Productos Finales de Glicación Avanzada/genética , Análisis de Secuencia de ARN , Médula Espinal/patología , Superóxido Dismutasa-1/metabolismo
10.
Int J Mol Sci ; 20(11)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141951

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease characterized by a permanent degeneration of both upper and lower motor neurons. Many different genes and pathophysiological processes contribute to this disease, however its exact cause remains unclear. Therefore, it is necessary to understand this heterogeneity to find effective treatments. In this review, we focus on selected environmental and genetic risk factors predisposing to ALS and highlight emerging treatments in ALS therapy. Of numerous defective genes associated with ALS, we focus on four principal genes that have been identified as definite causes of ALS: the SOD1 gene, C9orf72, TDP-43, as well as the recently identified TBK1. We also provide up-to-date information on selected environmental factors that have historically been considered as key players in ALS development and pathogenesis. In parallel to our survey of known risk factors, we also discuss emerging ALS stem cell therapies and experimental medicines currently undergoing phase II and III clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Predisposición Genética a la Enfermedad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Terapia Genética , Humanos , Terapia Molecular Dirigida , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
11.
Int J Mol Sci ; 19(3)2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29562705

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) is a genome editing tool that has recently caught enormous attention due to its novelty, feasibility, and affordability. This system naturally functions as a defense mechanism in bacteria and has been repurposed as an RNA-guided DNA editing tool. Unlike zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 takes advantage of an RNA-guided DNA endonuclease enzyme, Cas9, which is able to generate double-strand breaks (DSBs) at specific genomic locations. It triggers cellular endogenous DNA repair pathways, contributing to the generation of desired modifications in the genome. The ability of the system to precisely disrupt DNA sequences has opened up new avenues in our understanding of amyotrophic lateral sclerosis (ALS) pathogenesis and the development of new therapeutic approaches. In this review, we discuss the current knowledge of the principles and limitations of the CRISPR/Cas9 system, as well as strategies to improve these limitations. Furthermore, we summarize novel approaches of engaging the CRISPR/Cas9 system in establishing an adequate model of neurodegenerative disease and in the treatment of SOD1-linked forms of ALS. We also highlight possible applications of this system in the therapy of ALS, both the inherited type as well as ALS of sporadic origin.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Sistemas CRISPR-Cas/genética , Técnicas Genéticas , Humanos , Modelos Biológicos
12.
Przegl Lek ; 72(6): 282-5, 2015.
Artículo en Polaco | MEDLINE | ID: mdl-26817334

RESUMEN

The diagnosis of patients with severe carpal tunnel syndrome (CTS) who do not respond to median nerve stimulation and of those with early CTS who report symptoms but show no abnormalities in standard tests is the most challenging. The aim of the study was to assess correlations between the 2LI-DML test and standard tests used for the diagnosis of CTS (SL-D2, DML-APB, D4M-D4U). The study involved 172 patients (253 nerves) with clinical symptoms of CTS. The sensitivity of the 2LI-DML test and standard tests was analyzed in 6 groups of patients classified according to the severity of CTS, assessed by an electrophysiological study. We showed a significant relationship between the results of the 2LI-DML test and those of standard tests (SL-D2, DML-APB, D4M-D4U), as revealed by a topographic analysis of sensory and motor fibers of the median nerve at the site most vulnerable to compression.


Asunto(s)
Síndrome del Túnel Carpiano/diagnóstico , Electrodiagnóstico , Adulto , Femenino , Humanos , Masculino , Nervio Mediano/fisiopatología , Persona de Mediana Edad , Tiempo de Reacción , Adulto Joven
13.
PLoS One ; 19(3): e0299567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457412

RESUMEN

Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease characterized by a progressive loss of motor neurons resulting in paralysis and muscle atrophy. One of the most prospective hypothesis on the ALS pathogenesis suggests that excessive inflammation and advanced glycation end-products (AGEs) accumulation play a crucial role in the development of ALS in patients and SOD1 G93A mice. Hence, we may speculate that RAGE, receptor for advanced glycation end-products and its proinflammatory ligands such as: HMGB1, S100B and CML contribute to ALS pathogenesis. The aim of our studies was to decipher the role of RAGE as well as provide insight into RAGE signaling pathways during the progression of ALS in SOD1 G93A and RAGE-deficient SOD1 G93A mice. In our study, we observed alternations in molecular pattern of proinflammatory RAGE ligands during progression of disease in RAGE KO SOD1 G93A mice compared to SOD1 G93A mice. Moreover, we observed that the amount of beta actin (ACTB) as well as Glial fibrillary acidic protein (GFAP) was elevated in SOD1 G93A mice when compared to mice with deletion of RAGE. These data contributes to our understanding of implications of RAGE and its ligands in pathogenesis of ALS and highlight potential targeted therapeutic interventions at the early stage of this devastating disease. Moreover, inhibition of the molecular cross-talk between RAGE and its proinflammatory ligands may abolish neuroinflammation, gliosis and motor neuron damage in SOD1 G93A mice. Hence, we hypothesize that attenuated interaction of RAGE with its proinflammatory ligands may improve well-being and health status during ALS in SOD1 G93A mice. Therefore, we emphasize that the inhibition of RAGE signaling pathway may be a therapeutic target for neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Superóxido Dismutasa-1 , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Transgénicos , Estudios Prospectivos , Receptor para Productos Finales de Glicación Avanzada/genética , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
14.
Eur J Neurosci ; 38(8): 3159-68, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23941591

RESUMEN

Diabetic peripheral nerve dysfunction is a common complication occurring in 30-50% of long-term diabetic patients. The pathogenesis of this dysfunction remains unclear but growing evidence suggests that it might be attributed, in part, to alteration in axonal transport. Our previous studies demonstrated that RAGE (Receptor for Advanced Glycation Endproducts) contributes to the pathogenesis of diabetic peripheral neuropathy and impairs nerve regeneration consequent to sciatic nerve crush, particularly in diabetes. We hypothesize that RAGE plays a role in axonal transport impairment via the interaction of its cytoplasmic domain with mammalian Diaphanous 1 (mDia1) - actin interacting molecule. Studies showed that mDia1-RAGE interaction is necessary for RAGE-ligand-dependent cellular migration, AKT phosphorylation, macrophage inflammatory response and smooth muscle migration. Here, we studied RAGE, mDia1 and markers of axonal transport rates in the peripheral nerves of wild-type C57BL/6 and RAGE null control and streptozotocin-injected diabetic mice at 1, 3 and 6 h after sciatic nerve crush. The results show that in both control and diabetic nerves, the amount of RAGE accumulated at the proximal and distal side of the crush area is similar, indicating that the recycling rate for RAGE is very high and that it is evenly transported from and towards the neuronal cell body. Furthermore, we show that slow axonal transport of proteins such as Neurofilament is affected by diabetes in a RAGE-independent manner. Finally, our study demonstrates that mDia1 axonal transport is impaired in diabetes, suggesting that diabetes-related changes affecting actin binding proteins occur early in the course of the disease.


Asunto(s)
Transporte Axonal , Diabetes Mellitus Experimental/metabolismo , Receptores Inmunológicos/metabolismo , Nervio Ciático/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Diabetes Mellitus Experimental/patología , Forminas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Compresión Nerviosa , Proteínas de Neurofilamentos/metabolismo , Unión Proteica , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Nervio Ciático/patología
15.
J Mol Med (Berl) ; 101(8): 1015-1028, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462767

RESUMEN

Multiple molecular pathways including the receptor for advanced glycation end-products-diaphanous related formin 1 (RAGE-Diaph1) signaling are known to play a role in diabetic peripheral neuropathy (DPN). Evidence suggests that neuropathological alterations in type 1 diabetic spinal cord may occur at the same time as or following peripheral nerve abnormalities. We demonstrated that DPN was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. More than 500 differentially expressed genes (DEGs) belonging to multiple functional pathways were identified in diabetic spinal cord and of those the most enriched was RAGE-Diaph1 related PI3K-Akt pathway. Only seven of spinal cord DEGs overlapped with DEGs from type 1 diabetic sciatic nerve and only a single gene cathepsin E (CTSE) was common for both type 1 and type 2 diabetic mice. In silico analysis suggests that molecular changes in spinal cord may act synergistically with RAGE-Diaph1 signaling axis in the peripheral nerve. KEY MESSAGES: Molecular perturbations in spinal cord may be involved in the progression of diabetic peripheral neuropathy. Diabetic peripheral neuropathy was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. In silico analysis revealed that PI3K-Akt signaling axis related to RAGE-Diaph1 was the most enriched biological pathway in diabetic spinal cord. Cathepsin E may be the target molecular hub for intervention against diabetic peripheral neuropathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Hiperglucemia , Animales , Ratones , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicaciones , Catepsina E , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Nervio Ciático/patología , Hiperglucemia/genética , Hiperglucemia/patología
16.
J Clin Med ; 11(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807006

RESUMEN

Current data indicate that heart failure (HF) is associated with inflammation and microvascular dysfunction and remodeling. These mechanisms could be involved in HF development and progression, especially in HF with preserved ejection fraction (HFpEF). We aimed to compare structural changes in retinal arterioles and carotid arteries between HF patients and patients without heart failure. This preliminary, retrospective, case-control study included 28 participants (14 patients with HFpEF and 14 age- and sex-matched healthy controls). Carotid intima-media thickness to lumen ratio (cIMTLR) was assessed using B-mode ultrasonography. Retinal arterioles wall- to-lumen ratio (rWLR) was assessed by adaptive optics camera rtx1. The HF patients had higher IMTLR (Δmedian [HFpEF-control group] 0.07, p = 0.01) and eWLR (Δmedian 0.03, p = 0.001) in comparison to patients without HF. In the whole study group, rWLR correlated significantly with IMTLR (r = 0.739, p = 0.001). Prevalence of arterial hypertension was similar in both groups, however, patients with HF had a significantly lower office, central and 24-h ambulatory blood pressure (systolic Δmedian -21 to -18 mmHg; diastolic Δmedian -23 to -10 mmHg). Our data suggests gradual and simultaneous progression of vascular remodeling in both retinal arterioles and carotid arteries in HFpEF patients. This process could be a marker of HF development. Significantly lower blood pressure values in HF group may indicate that vascular remodeling could be independent of BP control. Nevertheless, further and larger prospective studies allowing to reduce the impact of confounding and address temporality are warranted.

17.
Neurosci Bull ; 38(10): 1248-1262, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35729453

RESUMEN

This review reflects upon our own as well as other investigators' studies on the role of receptor for advanced glycation end-products (RAGE), bringing up the latest information on RAGE in physiology and pathology of the nervous system. Over the last ten years, major progress has been made in uncovering many of RAGE-ligand interactions and signaling pathways in nervous tissue; however, the translation of these discoveries into clinical practice has not come to fruition yet. This is likely, in part to be the result of our incomplete understanding of this crucial signaling pathway. Clinical trials examining the therapeutic efficacy of blocking RAGE-external ligand interactions by genetically engineered soluble RAGE or an endogenous RAGE antagonist, has not stood up to its promise; however, other trials with different blocking agents are being considered with hope for therapeutic success in diseases of the nervous system.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Ligandos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/fisiología
18.
Life (Basel) ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34833143

RESUMEN

The objective of the study was to compare the effects of experimentally induced type 1 or type 2 diabetes (T1D or T2D) on the functional, structural and biochemical properties of mouse peripheral nerves. Eight-week-old C57BL/6 mice were randomly assigned into three groups, including the control (CTRL, chow-fed), STZ (streptozotocin (STZ)-injected), and HFD (high-fat diet (HFD)-fed) group. After 18-weeks of experimental treatment, HFD mice had higher body weights and elevated levels of plasma lipids, while STZ mice developed hyperglycemia. STZ-treated mice, after an extended period of untreated diabetes, developed motor and sensory nerve conduction-velocity deficits. Moreover, relative to control fibers, pre- and diabetic axons were lower in number and irregular in shape. Animals from both treatment groups manifested a pronounced overexpression of nNOS and a reduced expression of SOD1 proteins in the sciatic nerve, indicating oxidative-nitrosative stress and ineffective antioxidant protection in the peripheral nervous system of these mice. Collectively, STZ- and HFD-treated mice revealed similar characteristics of peripheral nerve damage, including a number of morphological and electrophysiological pathologies in the sciatic nerve. While hyperglycemia is a large component of diabetic neuropathy pathogenesis, the non-hyperglycemic effects of diabetes, including dyslipidemia, may also be of importance in the development of this condition.

19.
PLoS One ; 15(11): e0242746, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33227035

RESUMEN

Galanin is a neuropeptide widely expressed in central and peripheral nerves and is known to be engaged in neuronal responses to pathological changes. Stomach ulcerations are one of the most common gastrointestinal disorders. Impaired stomach function in peptic ulcer disease suggests changes in autonomic nerve reflexes controlled by the inferior vagal ganglion, resulting in stomach dysfunction. In this paper, changes in the galaninergic response of inferior vagal neurons to gastric ulceration in a pig model of the disease were analyzed based on the authors' previous studies. The study was performed on 24 animals (12 control and 12 experimental). Gastric ulcers were induced by submucosal injections of 40% acetic acid solution into stomach submucosa and bilateral inferior vagal ganglia were collected one week afterwards. The number of galanin-immunoreactive perikarya in each ganglion was counted to determine fold-changes between both groups of animals and Q-PCR was applied to verify the changes in relative expression level of mRNA encoding both galanin and its receptor subtypes: GalR1, GalR2, GalR3. The results revealed a 2.72-fold increase in the number of galanin-immunoreactive perikarya compared with the controls. Q-PCR revealed that all studied genes were expressed in examined ganglia in both groups of animals. Statistical analysis revealed a 4.63-fold increase in galanin and a 1.45-fold increase in GalR3 mRNA as compared with the controls. No differences were observed between the groups for GalR1 or GalR2. The current study confirmed changes in the galaninergic inferior vagal ganglion response to stomach ulcerations and demonstrated, for the first time, the expression of mRNA encoding all galanin receptor subtypes in the porcine inferior vagal ganglia.


Asunto(s)
Galanina/metabolismo , Ganglios Parasimpáticos/metabolismo , Receptores de Galanina/metabolismo , Úlcera Gástrica/metabolismo , Nervio Vago/metabolismo , Ácido Acético/toxicidad , Animales , Ganglios Parasimpáticos/patología , ARN Mensajero/metabolismo , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/patología , Porcinos , Nervio Vago/patología
20.
FASEB J ; 22(10): 3736-46, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18606864

RESUMEN

The alpha-subunits of the trimeric Go class of GTPases, comprising the splice variants Go1alpha and Go2alpha, are abundantly expressed in brain and reside on both plasma membrane and synaptic vesicles. Go2alpha is involved in the vesicular storage of monoamines but its physiological relevance is still obscure. We now show that genetic depletion of Go2alpha reduces motor activity induced by dopamine-enhancing drugs like cocaine, as repeated injections of cocaine fail to provoke behavioral sensitization in Go2alpha(-/-) mice. In Go2alpha(-/-) mice, D1 receptor signaling in the striatum is attenuated due to a reduced expression of Golf alpha and Gs alpha. Following cocaine treatment, Go2alpha(-/-) mice have lower D1 and higher D2 receptor amounts compared to wild-type mice. The lack of behavioral sensitization correlates with reduced dopamine levels in the striatum and decreased expression of tyrosine hydroxylase. One reason for the neurochemical changes may be a reduced uptake of monoamines by synaptic vesicles from Go2alpha(-/-) mice as a consequence of a lowered set point for filling. We conclude that Go2alpha optimizes vesicular filling which is instrumental for normal dopamine functioning and for the development of drug-induced behavioral sensitization.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Actividad Motora , Receptores de Dopamina D1/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Transporte Biológico , Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Eliminación de Gen , Ratones , Ratones Mutantes , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Receptores de Dopamina D2/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA