Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Stem Cells ; 35(12): 2379-2389, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29024236

RESUMEN

The therapeutic effect of mesenchymal stromal cells (MSC) in tissue regeneration is based mainly on the secretion of bioactive molecules. Here, we report that the radioprotective effect of mouse bone marrow derived mesenchymal stromal cells (mMSC) can be attributed to extracellular vesicles (EV) released from mMSC. The transplantation of mMSC-derived EV into lethally irradiated mice resulted in long-term survival but no improvement in short-term reconstitution of the recipients. Importantly, the radiation rescue was efficient without additional hematopoietic support. In vitro we show a protection by EV of irradiated hematopoietic stem cells but not progenitor cells using stroma-cell cultures and colony-forming assays. After systemic infusion into lethally irradiated recipients, labeled EV traveled freely through the body reaching the bone marrow within 2 hours. We further show that long-term repopulating Sca-1 positive and c-kit low-positive stem cells were directly targeted by EV leading to long-term survival. Collectively, our data suggest EV as an effective first-line treatment to combat radiation-induced hematopoietic failure which might also be helpful in alleviating myelosuppression due to chemotherapy and toxic drug reaction. We suggest the infusion of MSC-derived EV as efficient and immediate treatment option after irradiation injuries. Stem Cells 2017;35:2379-2389.


Asunto(s)
Vesículas Extracelulares/fisiología , Células Madre Hematopoyéticas/fisiología , Células Madre Mesenquimatosas/fisiología , Irradiación Corporal Total , Animales , Trasplante de Médula Ósea , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo
2.
Cells Tissues Organs ; 201(2): 109-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26939110

RESUMEN

Ischemic acute kidney injury (AKI) is associated with high morbidity and frequent complications. Repeated episodes of AKI may lead to end-stage renal failure. The pathobiology of regeneration in AKI is not well understood and there is no effective clinical therapy that improves regeneration. The Notch signaling pathway plays an essential role in kidney development and has been implicated in tissue repair in the adult kidney. Here, we found that kidneys after experimental AKI in mice showed increased expression of Notch receptors, specifically Notch1-3, of the Notch ligands Jagged-1 (Jag1), Jag2 and Delta-like-4 (Dll4) and of the Notch target genes Hes1, Hey2, HeyL, Sox9 and platelet-derived growth factor receptor ß (Pdgfrb). Treatment of ischemic mice with the x03B3;-secretase inhibitor DBZ blocked Notch signaling and specifically downregulated the expression of Notch3 and the Notch target genes Hes1, Hey2, HeyL and Pdgfrb. After DBZ treatment, the mice developed less interstitial edema and displayed altered interstitial inflammation patterns. Furthermore, serum urea and creatinine levels were significantly decreased from 6 h onwards when compared to control mice treated with DMSO only. Our data are consistent with an amelioration of the severity of kidney injury by blocking Notch activation following AKI, and suggest an involvement of Notch-regulated Pdgfrb in AKI pathogenesis.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Riñón/efectos de los fármacos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones
3.
Stem Cells ; 31(4): 741-51, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23307615

RESUMEN

Notch signaling is a key regulator of cell-fate decisions and is essential for proper neuroectodermal development. There, it favors the formation of ectoderm, promotes maintenance of neural stem cells, inhibits differentiation into neurons, and commits neural progenitors to a glial fate. In this report, we explore downstream effects of Notch important for astroglial differentiation. Transient activation of Notch1 during early stages of neuroectodermal differentiation of embryonic stem cells resulted in an increase of neural stem cells, a reduction in neurons, an induction of astroglial cell differentiation, and an induction of neural crest (NC) development. Transient or continuous activation of Notch1 during neuroectodermal differentiation led to upregulation of Sox9 expression. Knockdown of the Notch1-induced Sox9 expression reversed Notch1-induced astroglial cell differentiation, increase in neural stem cells, and the decrease in neurons, whereas the Notch1 effects on NC development were hardly affected by knockdown of Sox9 expression. These findings reveal a critical role for Notch-mediated upregulation of Sox9 in a select set of neural lineage determination steps controlled by Notch.


Asunto(s)
Células Madre Embrionarias/citología , Factor de Transcripción SOX9/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Citometría de Flujo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , ARN Interferente Pequeño/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
PLoS One ; 19(1): e0295641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38215076

RESUMEN

Brain metastasis leads to increased mortality and is a major site of relapse for several cancers, yet the molecular mechanisms of brain metastasis are not well understood. In this study, we established and characterized a new leukemic cell line, FIA10, that metastasizes into the central nervous system (CNS) following injection into the tail vein of syngeneic mice. Mice injected with FIA10 cells developed neurological symptoms such as loss of balance, tremor, ataxic gait and seizures, leading to death within 3 months. Histopathology coupled with PCR analysis clearly showed infiltration of leukemic FIA10 cells into the brain parenchyma of diseased mice, with little involvement of bone marrow, peripheral blood and other organs. To define pathways that contribute to CNS metastasis, global transcriptome and proteome analysis was performed on FIA10 cells and compared with that of the parental stem cell line FDCP-Mix and the related FIA18 cells, which give rise to myeloid leukemia without CNS involvement. 188 expressed genes (RNA level) and 189 proteins were upregulated (log2 ratio FIA10/FIA18 ≥ 1) and 120 mRNAs and 177 proteins were downregulated (log2 ratio FIA10/FIA18 ≤ 1) in FIA10 cells compared with FIA18 cells. Major upregulated pathways in FIA10 cells revealed by biofunctional analyses involved immune response components, adhesion molecules and enzymes implicated in extracellular matrix remodeling, opening and crossing the blood-brain barrier (BBB), molecules supporting migration within the brain parenchyma, alterations in metabolism necessary for growth within the brain microenvironment, and regulators for these functions. Downregulated RNA and protein included several tumor suppressors and DNA repair enzymes. In line with the function of FIA10 cells to specifically infiltrate the brain, FIA10 cells have acquired a phenotype that permits crossing the BBB and adapting to the brain microenvironment thereby escaping immune surveillance. These data and our model system FIA10 will be valuable resources to study the occurrence of brain metastases and may help in the development of potential therapies against brain invasion.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Ratones , Animales , Transcriptoma , Proteómica , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , ARN/metabolismo , Línea Celular , Microambiente Tumoral
5.
J Cell Biochem ; 112(12): 3573-81, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21780162

RESUMEN

Phosphatidylinositol-3-kinases (PI3Ks) exert a variety of signaling functions in eukaryotes. We suppressed the PI3K regulatory subunit p85α using a small interfering RNA (Pik3r1 siRNA) and examined the effects on embryoid body (EB) development in hanging drop culture. We observed a 150% increase in the volume of the treated EBs within 24 h, compared to the negative controls. Fluorescence Activated Cell Sorting (FACS) assays showed that this increase in volume is not due to increased cellular proliferation. Instead, the increase in volume appears to be due to reduced cellular aggregation and adherence. This is further shown by our observation that 40% of treated EBs form twin instead of single EBs, and that they have a significantly reduced ability to adhere to culture dishes when plated. A time course over the first 96 h reveals that the impaired adherence is transient and explained by an initial 12-hour delay in EB development. Quantitative PCR expression analysis suggests that the adhesion molecule integrin-ß1 (ITGB1) is transiently downregulated by the p85α suppression. In conclusion we found that suppressing p85α leads to a delay in forming compact EBs, accompanied by a transient inability of the EBs to undergo normal cell-cell and cell-substrate adhesion.


Asunto(s)
Adhesión Celular , Cuerpos Embrioides/citología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Western Blotting , Diferenciación Celular , Técnicas de Silenciamiento del Gen , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño
6.
Cells Tissues Organs ; 188(1-2): 91-102, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18196925

RESUMEN

Notch signaling is a highly conserved mechanism of intercellular communication that controls the developmental fate in all animal species studied to date. Specific transmembrane ligands activate Notch receptors on neighboring cells, thereby inducing proteolytic cleavage and nuclear translocation of the Notch intracellular domain (Notch(IC)). Notch(IC) associates with the transcriptional repressor RBP-J (recombination recognition sequence binding protein at the J kappa site), also known as CSL [CBF1/Su(H)/Lag-1], and converts it to an activator. In conjunction with chromatin remodeling enzymes, components of the transcriptional machinery and the activity of other cofactors, Notch(IC) induces transcription of downstream target genes, including genes of the Hes (hairy and enhancer of split) and Hey (also called Hes-related repressor Herp, Hesr, Hrt, CHF, gridlock) family. Recent evidence has shown that the Notch pathway is involved in multiple aspects of hematopoietic development. In this review, we summarize the current knowledge of the components and mechanisms of the Notch signaling pathway and discuss the role of Notch in embryonic and adult myelopoiesis. Finally, we will focus on mediators of Notch signaling in the hematopoietic system. We propose that besides suppression of differentiation mediated by the Hes/Hey family, Notch/ RBP-J signaling mediates lineage decisions by direct activation of transcription factors such as PU.1, that are critically involved in directing cells along certain cell lineages, and further influences maturation by activation of functional genes, for example beta-globin.


Asunto(s)
Embrión de Mamíferos/metabolismo , Mielopoyesis , Receptores Notch/metabolismo , Transducción de Señal , Adulto , Animales , Humanos
7.
Exp Hematol ; 35(9): 1321-32, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17637499

RESUMEN

OBJECTIVE: In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells. MATERIALS AND METHODS: Multipotent FDCP-mix cell lines engineered to permit the conditional induction of the constitutively active intracellular domain of mNotch1 (mN1(IC)) by the 4-hydroxytamoxifen (OHT)-inducible system were used to analyze the effects of activated mNotch1 on erythroid differentiation and on expression of Gata1, Fog1, Eklf, NF-E2, and beta-globin. Expression was analyzed by Northern blotting and real-time polymerase chain reaction. Enhancer activity of reporter constructs was determined with the dual luciferase system in transient transfection assays. RESULTS: Induction of mN1(IC) by OHT resulted in increased and accelerated differentiation of FDCP-mix cells along the erythroid lineage. Erythroid maturation was induced by activated Notch1 also under conditions that normally promote self-renewal, but required the presence of erythropoietin for differentiation to proceed. While induction of Notch signaling rapidly upregulated Hes1 and Hey1 expression, the expression of Gata1, Fog1, Eklf, and NF-E2 remained unchanged. Concomitantly with erythroid differentiation, activated mNotch1 upregulated beta-globin RNA. Notch signaling transactivated a reporter construct harboring a conserved RBP-J (CBF1) binding site in the hypersensitive site 2 (HS2) of human beta-globin. Transactivation by activated Notch was completely abolished when this RBP-J site was mutated to prevent RBP-J binding. CONCLUSIONS: Our results show that activation of mNotch1 induces erythroid differentiation in cooperation with erythropoietin and upregulates beta-globin expression.


Asunto(s)
Células Precursoras Eritroides/citología , Eritropoyetina/fisiología , Globinas/metabolismo , Células Madre Multipotentes/citología , Receptor Notch1/fisiología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Eritrocitos/citología , Humanos , Células K562 , Ratones , Regulación hacia Arriba
8.
Mech Dev ; 123(7): 570-9, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16822655

RESUMEN

Signals of Notch transmembrane receptors function to regulate a wide variety of developmental cell fates. Here we investigate the role of Notch signaling in the development of mesodermal cell types by expressing a tamoxifen-inducible, activated form of Notch1 in embryonic stem cells (ESC). For differentiation of ESC into first mesodermal progenitor cells and then endothelial, mural, cardiac muscle and hematopoietic cells, the OP9 stroma co-culture system was used. Timed activation of Notch signaling by the addition of tamoxifen at various stages during differentiation of ESC into mesodermal cell lineages results in profound alterations in the generation of all of these cells. Differentiation of ESC into Flk1(+) mesodermal cells is inhibited by activated Notch. When Notch signaling is activated in mesodermal cells, generation of cardiac muscle, endothelial and hematopoietic cells is inhibited, favoring the generation of mural cells. Activation of Notch signaling in hematopoietic cells reduces colony formation and maintenance of hematopoiesis. These data suggest that Notch signaling plays a regulatory role in mesodermal development, cardiomyogenesis, the balanced generation of endothelial versus mural cells of blood vessels and hematopoietic development.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Madre Embrionarias/citología , Mesodermo/citología , Receptor Notch1/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Hematopoyesis/genética , Humanos , Miocitos Cardíacos/citología , Receptor Notch1/genética , Receptor Notch1/fisiología , Transducción de Señal/fisiología
9.
Mol Cell Biol ; 24(21): 9414-23, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15485910

RESUMEN

Oxygen radicals regulate many physiological processes, such as signaling, proliferation, and apoptosis, and thus play a pivotal role in pathophysiology and disease development. There are at least two thioredoxin reductase/thioredoxin/peroxiredoxin systems participating in the cellular defense against oxygen radicals. At present, relatively little is known about the contribution of individual enzymes to the redox metabolism in different cell types. To begin to address this question, we generated and characterized mice lacking functional mitochondrial thioredoxin reductase (TrxR2). Ubiquitous Cre-mediated inactivation of TrxR2 is associated with embryonic death at embryonic day 13. TrxR2(TrxR2(-/-)minus;/TrxR2(-/-)minus;) embryos are smaller and severely anemic and show increased apoptosis in the liver. The size of hematopoietic colonies cultured ex vivo is dramatically reduced. TrxR2-deficient embryonic fibroblasts are highly sensitive to endogenous oxygen radicals when glutathione synthesis is inhibited. Besides the defect in hematopoiesis, the ventricular heart wall of TrxR2(TrxR2(-/-)minus;/TrxR2(-/-)minus;) embryos is thinned and proliferation of cardiomyocytes is decreased. Cardiac tissue-restricted ablation of TrxR2 results in fatal dilated cardiomyopathy, a condition reminiscent of that in Keshan disease and Friedreich's ataxia. We conclude that TrxR2 plays a pivotal role in both hematopoiesis and heart function.


Asunto(s)
Corazón/embriología , Corazón/fisiología , Hematopoyesis , Mitocondrias Cardíacas/enzimología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Cardiomiopatía Dilatada/congénito , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Recuento de Células , Diferenciación Celular , Pérdida del Embrión/enzimología , Pérdida del Embrión/genética , Sangre Fetal/citología , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genes Letales/genética , Genes Reporteros/genética , Corazón/crecimiento & desarrollo , Hematopoyesis/genética , Operón Lac/genética , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 2 , Reductasa de Tiorredoxina-Disulfuro/deficiencia , Reductasa de Tiorredoxina-Disulfuro/genética
10.
Arterioscler Thromb Vasc Biol ; 26(9): 1977-84, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16809546

RESUMEN

OBJECTIVE: The acquisition of arterial or venous identity is highlighted in vascular development. Previously, we have reported an embryonic stem (ES) cell differentiation system that exhibits early vascular development using vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2)-positive cells as common vascular progenitors. In this study, we constructively induced differentiation of arterial and venous endothelial cells (ECs) in vitro to elucidate molecular mechanisms of arterial-venous specification. METHODS AND RESULTS: ECs were induced from VEGFR2+ progenitor cells with various conditions. VEGF was essential to induce ECs. Addition of 8bromo-cAMP or adrenomedullin (AM), an endogenous ligand-elevating cAMP, enhanced VEGF-induced EC differentiation. Whereas VEGF alone mainly induced venous ECs, 8bromo-cAMP (or AM) with VEGF supported substantial induction of arterial ECs. Stimulation of cAMP pathway induced Notch signal activation in ECs. The arterializing effect of VEGF and cAMP was abolished in recombination recognition sequence binding protein at the Jkappa site deficient ES cells lacking Notch signal activation or in ES cells treated with gamma-secretase inhibitor. Nevertheless, forced Notch activation by the constitutively active Notch1 alone did not induce arterial ECs. CONCLUSIONS: Adrenomedullin/cAMP is a novel signaling pathway to activate Notch signaling in differentiating ECs. Coordinated signaling of VEGF, Notch, and cAMP is required to induce arterial ECs from vascular progenitors.


Asunto(s)
Arterias/citología , Diferenciación Celular/fisiología , AMP Cíclico/metabolismo , Células Endoteliales/citología , Péptidos/metabolismo , Receptores Notch/metabolismo , Células Madre/citología , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Adrenomedulina , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Sinergismo Farmacológico , Ratones , Péptidos/farmacología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/farmacología , Venas/citología
12.
Exp Hematol ; 31(1): 39-47, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12543105

RESUMEN

OBJECTIVES: The Ets-family transcription factor PU.1 is expressed specifically in the hematopoietic system, in which it is absolutely required for the generation of B lymphocytes and macrophages. In contrast, overexpression of PU.1 blocks terminal differentiation of the erythroid lineage, in which it can act as an oncogene. In this study we used a multipotential progenitor cell line to examine the effects of PU.1 overexpression on myeloerythroid commitment within a single model system. MATERIALS AND METHODS: PU.1 cDNA was introduced transiently and stably into the multipotent, nonleukemic hemopoietic cell line FDCPmix. Transiently transfected cells were isolated by fluorescence-activated cell sorting within 18 hours of transfection. Stable transfectants were selected by antibiotic resistance over a number of weeks. The effects of short- and long-term overexpression of PU.1 on self-renewal, proliferation, and differentiation were investigated. RESULTS: A transient pulse of expression in multipotent progenitor cells eliminated the options of self-renewal and erythroid differentiation, resulting in commitment to the myeloid lineage. However, this transient pulse of expression did not affect the subsequent lineage choice of bipotent granulocyte/macrophage progenitors. In contrast, continuous expression of PU.1 resulted in a strong bias toward macrophage rather than granulocyte differentiation. CONCLUSIONS: These results demonstrate promyeloid effects of PU.1 at two distinct stages of hematopoiesis.


Asunto(s)
Granulocitos/citología , Macrófagos/citología , Células Mieloides/citología , Proteínas Proto-Oncogénicas/fisiología , Transactivadores/fisiología , Animales , Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , Linaje de la Célula , Separación Celular , Células Cultivadas/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Células Precursoras Eritroides/citología , Eritropoyetina/farmacología , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Interleucina-3/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/fisiología , Transactivadores/biosíntesis , Transactivadores/genética , Transfección
13.
Vet Immunol Immunopathol ; 84(1-2): 61-70, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11825598

RESUMEN

Dogs are used in preclinical transplantation models to study methods of allogeneic bone marrow transplantation (BMT). The evaluation of chimerism is of major significance for the investigation of graft-vs.-host (GvH) and host-vs.-graft (HvG) reactions. To detect and quantitate male donor cells after a sex-mismatched (male to female) allogeneic BMT, we established a semi-quantitative polymerase chain reaction (PCR) assay. Based on the canine Y-chromosome sex-determining region (Sry) sequence, we designed primer specific for the detection of male DNA and optimised PCR conditions and cycle numbers. Artificial mixtures of male and female leukocytes were used to analyse the sensitivity of the assay. To validate our established method, we determined the percentage of chimerism in three transplanted female dogs. Under optimised conditions, the established PCR assay specifically detected male cells down to 0.01%, which corresponds to 0.1ng of transplanted male DNA. The percentage of chimerism could be quantitated either by agarose gel analysis or Southern blot analysis. Using our assay, we could confirm the percentage of chimerism in blood samples of three transplanted female canines, previously determined by karyotype analysis as 0, 100 and 100%, respectively. The established semi-quantitative PCR assay offers a quick, simple, accurate and sensitive way of evaluating and quantitating the percentage of chimerism in a sex-mismatched canine BMT model.


Asunto(s)
Trasplante de Médula Ósea , Genes sry , Reacción en Cadena de la Polimerasa/métodos , Animales , Quimera , Perros , Femenino , Masculino , Sensibilidad y Especificidad
15.
Eur J Cell Biol ; 90(6-7): 572-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21126799

RESUMEN

Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency. In this review, we summarize the influences of the cellular context that regulate Notch activity and propose a model how the interplay between the cell-intrinsically established chromatin state and the cell-extrinsic signals that modify chromatin may select for Notch target accessibility and activation in different cellular contexts.


Asunto(s)
Receptores Notch/genética , Receptores Notch/metabolismo , Apoptosis/fisiología , Humanos , Transducción de Señal
16.
PLoS One ; 5(7): e11481, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20628604

RESUMEN

BACKGROUND: Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues. METHODOLOGY/PRINCIPAL FINDINGS: To analyze how Notch signaling mediates its context dependent function(s), we utilized a Tamoxifen-inducible system to activate Notch1 in murine embryonic stem cells at different stages of mesodermal differentiation and performed global transcriptional analyses. We find that the majority of genes regulated by Notch1 are unique for the cell type and vary widely dependent on other signals. We further show that Notch1 signaling regulates expression of genes playing key roles in cell differentiation, cell cycle control and apoptosis in a context dependent manner. In addition to the known Notch1 targets of the Hes and Hey families of transcriptional repressors, Notch1 activates the expression of regulatory transcription factors such as Sox9, Pax6, Runx1, Myf5 and Id proteins that are critically involved in lineage decisions in the absence of protein synthesis. CONCLUSION/SIGNIFICANCE: We suggest that Notch signaling determines lineage decisions and expansion of stem cells by directly activating both key lineage specific transcription factors and their repressors (Id and Hes/Hey proteins) and propose a model by which Notch signaling regulates cell fate commitment and self renewal in dependence of the intrinsic and extrinsic cellular context.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Receptor Notch1/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Receptor Notch1/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
17.
FEBS J ; 276(24): 7253-64, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20050180

RESUMEN

The conserved Rho-type GTPase Cdc42p is a key regulator of signal transduction and polarity in eukaryotic cells. In the yeast Saccharomyces cerevisiae, Cdc42p promotes polarized growth through the p21-activated kinases Ste20p and Cla4p. Previously, we demonstrated that Ste20p forms a complex with Erg4p, Cbr1p and Ncp1p, which all catalyze important steps in sterol biosynthesis. CLA4 interacts genetically with ERG4 and NCP1. Furthermore, Erg4p, Ncp1p and Cbr1p play important roles in cell polarization during vegetative growth, mating and filamentation. As Ste20p and Cla4p are involved in these processes it seems likely that sterol biosynthetic enzymes and p21-activated kinases act in related pathways. Here, we demonstrate that the deletion of either STE20 or CLA4 results in increased levels of sterols. In addition, higher concentrations of steryl esters, the storage form of sterols, were observed in cla4Delta cells. CLA4 expression from a multicopy plasmid reduces enzyme activity of Are2p, the major steryl ester synthase, under aerobic conditions. Altogether, our data suggest that Ste20p and Cla4p may function as negative modulators of sterol biosynthesis. Moreover, Cla4p has a negative effect on steryl ester formation. As sterol homeostasis is crucial for cell polarization, Ste20p and Cla4p may regulate cell polarity in part through the modulation of sterol homeostasis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Esteroles/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/fisiología , Polaridad Celular/efectos de los fármacos , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Quinasa Quinasa PAM , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esterol O-Aciltransferasa/fisiología
18.
Mol Biol Cell ; 20(22): 4826-37, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19793923

RESUMEN

In Saccharomyces cerevisiae, the Rho-type GTPase Cdc42 regulates polarized growth through its effectors, including the p21-activated kinases (PAKs) Ste20, Cla4, and Skm1. Previously, we demonstrated that Ste20 interacts with several proteins involved in sterol synthesis that are crucial for cell polarization. Under anaerobic conditions, sterols cannot be synthesized and need to be imported into cells. Here, we show that Ste20, Cla4, and Skm1 form a complex with Sut1, a transcriptional regulator that promotes sterol uptake. All three PAKs can translocate into the nucleus and down-regulate the expression of genes involved in sterol uptake, including the Sut1 targets AUS1 and DAN1 by a novel mechanism. Consistently, deletion of either STE20, CLA4, or SKM1 results in an increased sterol influx and PAK overexpression inhibits sterol uptake. For Ste20, we demonstrate that the down-regulation of gene expression requires nuclear localization and kinase activity of Ste20. Furthermore, the Ste20-mediated control of expression of sterol uptake genes depends on SUT1 but is independent of a mitogen-activated protein kinase signaling cascade. Together, these observations suggest that PAKs translocate into the nucleus, where they modulate expression of sterol uptake genes via Sut1, thereby controlling sterol homeostasis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Esteroles/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Regulación hacia Abajo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Quinasa Quinasa PAM , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Señales de Localización Nuclear , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética
19.
Mol Biol Cell ; 19(7): 2885-96, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18417612

RESUMEN

The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3beta homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Ciclo Celular , Membrana Celular/metabolismo , Polaridad Celular , Proteínas de Unión al GTP/metabolismo , Eliminación de Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rho/química
20.
J Cell Sci ; 120(Pt 20): 3613-24, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17895367

RESUMEN

The Saccharomyces cerevisiae p21-activated kinase (PAK) Ste20 regulates various aspects of cell polarity during vegetative growth, mating and filamentous growth. To gain further insight into the mechanisms of Ste20 action, we screened for interactors of Ste20 using the split-ubiquitin system. Among the identified proteins were Erg4, Cbr1 and Ncp1, which are all involved in sterol biosynthesis. The interaction between Ste20 and Erg4, as well as between Ste20 and Cbr1, was confirmed by pull-down experiments. Deletion of either ERG4 or NCP1 resulted in various polarity defects, indicating a role for these proteins in bud site selection, apical bud growth, cell wall assembly, mating and invasive growth. Interestingly, Erg4 was required for the polarized localization of Ste20 during mating. Lack of CBR1 produced no detectable phenotype, whereas the deletion of CBR1 in the absence of NCP1 was lethal. Using a conditional lethal mutant we demonstrate that both proteins have overlapping functions in bud morphology.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteroles/biosíntesis , Actinas/metabolismo , Polaridad Celular , Péptidos y Proteínas de Señalización Intracelular , Quinasas Quinasa Quinasa PAM , Oxidorreductasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA