Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33891876

RESUMEN

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Autofagia Mediada por Chaperones/fisiología , Neuronas/metabolismo , Proteostasis , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Quinasa de la Caseína I/genética , Autofagia Mediada por Chaperones/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Neuronas/patología , Proteoma
2.
Autophagy ; 18(5): 1205-1207, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167431

RESUMEN

The circadian clock drives daily cycles of physiology and behavioral outputs to keep organisms in tune with the environment. Cyclic oscillations in levels of the clock proteins maintain circadian rhythmicity. In our recent work, we have discovered the interdependence of the circadian clock and chaperone-mediated autophagy (CMA), a selective form of lysosomal protein degradation. Central and peripheral degradation of core clock proteins by CMA (selective chronophagy) modulates circadian rhythm. Loss of CMA in vivo disrupts physiological circadian cycling, resembling defects observed in aging, a condition with reduced CMA. Conversely, the circadian clock temporally regulates CMA activity in a tissue-specific manner, contributing to remodeling of a distinct subproteome at different circadian times. This timely remodeling cannot be sustained when CMA fails, despite rerouting of some CMA substrates to other degradation pathways.


Asunto(s)
Autofagia Mediada por Chaperones , Autofagia/fisiología , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Lisosomas/metabolismo , Proteoma/metabolismo
3.
Sci Adv ; 8(46): eabq2733, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383673

RESUMEN

Adipogenesis is a tightly orchestrated multistep process wherein preadipocytes differentiate into adipocytes. The most studied aspect of adipogenesis is its transcriptional regulation through timely expression and silencing of a vast number of genes. However, whether turnover of key regulatory proteins per se controls adipogenesis remains largely understudied. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal protein degradation that, in response to diverse cues, remodels the proteome for regulatory purposes. We report here the activation of CMA during adipocyte differentiation and show that CMA regulates adipogenesis at different steps through timely degradation of key regulatory signaling proteins and transcription factors that dictate proliferation, energetic adaptation, and signaling changes required for adipogenesis.

4.
Nat Cell Biol ; 23(12): 1255-1270, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34876687

RESUMEN

Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/metabolismo , Autofagia Mediada por Chaperones/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Envejecimiento/fisiología , Animales , Lisosomas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fotoperiodo , Proteoma/genética , Proteostasis/fisiología , Privación de Sueño/fisiopatología , Transcripción Genética/genética
5.
Nat Commun ; 12(1): 2238, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854069

RESUMEN

Disrupted homeostasis of the microtubule binding protein tau is a shared feature of a set of neurodegenerative disorders known as tauopathies. Acetylation of soluble tau is an early pathological event in neurodegeneration. In this work, we find that a large fraction of neuronal tau is degraded by chaperone-mediated autophagy (CMA) whereas, upon acetylation, tau is preferentially degraded by macroautophagy and endosomal microautophagy. Rerouting of acetylated tau to these other autophagic pathways originates, in part, from the inhibitory effect that acetylated tau exerts on CMA and results in its extracellular release. In fact, experimental blockage of CMA enhances cell-to-cell propagation of pathogenic tau in a mouse model of tauopathy. Furthermore, analysis of lysosomes isolated from brains of patients with tauopathies demonstrates similar molecular mechanisms leading to CMA dysfunction. This study reveals that CMA failure in tauopathy brains alters tau homeostasis and could contribute to aggravate disease progression.


Asunto(s)
Autofagia Mediada por Chaperones , Tauopatías/metabolismo , Proteínas tau/metabolismo , Acetilación , Animales , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Tauopatías/genética , Tauopatías/patología , Tauopatías/fisiopatología , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA