RESUMEN
Intrinsic water-use efficiency (iWUE), a key index for carbon and water balance, has been widely estimated from tree-ring δ13 C at annual resolution, but rarely at high-resolution intraseasonal scale. We estimated high-resolution iWUE from laser-ablation δ13 C analysis of tree-rings (iWUEiso ) and compared it with iWUE derived from gas exchange (iWUEgas ) and eddy covariance (iWUEEC ) data for two Pinus sylvestris forests from 2002 to 2019. By carefully timing iWUEiso via modeled tree-ring growth, iWUEiso aligned well with iWUEgas and iWUEEC at intraseasonal scale. However, year-to-year patterns of iWUEgas , iWUEiso , and iWUEEC were different, possibly due to distinct environmental drivers on iWUE across leaf, tree, and ecosystem scales. We quantified the modification of iWUEiso by postphotosynthetic δ13 C enrichment from leaf sucrose to tree rings and by nonexplicit inclusion of mesophyll and photorespiration terms in photosynthetic discrimination model, which resulted in overestimation of iWUEiso by up to 11% and 14%, respectively. We thus extended the application of tree-ring δ13 C for iWUE estimates to high-resolution intraseasonal scale. The comparison of iWUEgas , iWUEiso , and iWUEEC provides important insights into physiological acclimation of trees across leaf, tree, and ecosystem scales under climate change and improves the upscaling of ecological models.
Asunto(s)
Pinus sylvestris , Ecosistema , Agua , Dióxido de Carbono , Bosques , Isótopos de Carbono/análisisRESUMEN
Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.
Asunto(s)
Tracheophyta , Teorema de Bayes , Bosques , Frío , Temperatura , Cambio Climático , Estaciones del AñoRESUMEN
Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.
Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrolloRESUMEN
This study aims to promote comprehensive utilization of woody biomass by providing a knowledgebase on the utility of aspen bark as a new alternative source for fossil-based chemicals. The research focused on the analysis of clonal variation in: (1) major chemical components, i.e., hemicelluloses, cellulose, and lignin; (2) extraneous materials, i.e., bark extractives, and suberic acid; (3) condensed tannins content and composition; and (4) screening differences in antioxidative properties and total phenolic content of hot water extracts and ethanol-water extracts of hybrid aspen bark. Results of this study, the discovery of clonal variation in utilizable chemicals, pave the way for further research on added-value potential of under-utilized hybrid aspen and its bark. Clonal variation was found in notable part of chemicals with potential for utilization. Based on the results, an appropriate bark raw material can be selected for tailored processing, thus improving the resource efficiency. The results also indicate that by applying cascade processing concepts, bark chemical substances could be more efficiently utilized with more environmentally friendly methods.
Asunto(s)
Corteza de la Planta/química , Populus/química , Cruzamientos Genéticos , Corteza de la Planta/genética , Populus/genéticaRESUMEN
To understand the positional and temporal defense mechanisms of coniferous tree bark at the tissue and cellular levels, the phloem topochemistry and structural properties were examined after artificially induced bark defense reactions. Wounding and fungal inoculation with Endoconidiophora polonica of spruce bark were carried out, and phloem tissues were frequently collected to follow the temporal and spatial progress of chemical and structural responses. The changes in (+)-catechin, (-)-epicatechin, stilbene glucoside, and resin acid distribution, and accumulation patterns within the phloem, were mapped using time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS), alongside detailed structural (LM, TEM, SEM) and quantitative chemical microanalyses of the tissues. Our results show that axial phloem parenchyma cells of Norway spruce contain (+)-catechins, the amount of which locally increases in response to fungal inoculation. The preformed, constitutive distribution and accumulation patterns of (+)-catechins closely follow those of stilbene glucosides. Phloem phenolics are not translocated but form a layered defense barrier with oleoresin compounds in response to pathogen attack. Our results suggest that axial phloem parenchyma cells are the primary location for (+)-catechin storage and synthesis in Norway spruce phloem. Chemical mapping of bark defensive metabolites by cryo-ToF-SIMS, in addition to structural and chemical microanalyses of the defense reactions, can provide novel information on the local amplitudes and localizations of chemical and structural defense mechanisms and pathogen-host interactions of trees.
Asunto(s)
Ascomicetos/patogenicidad , Catequina/análisis , Picea/microbiología , Cromatografía de Gases y Espectrometría de Masas , Glucósidos/análisis , Microscopía Electrónica de Transmisión , Floema/química , Picea/química , Corteza de la Planta/química , Enfermedades de las Plantas/microbiología , Extractos Vegetales/metabolismo , Espectrometría de Masa de Ion Secundario , Estilbenos/análisis , Distribución TisularRESUMEN
Bark of Norway spruce and Scots pine trees contain large amounts of condensed tannins. Tannins extracted with hot water could be used in different applications as they possess antioxidative and antimicrobial activities. The use of bark tannins as e.g., food preservatives calls for increases in our knowledge of their antioxidative activities when applied in foodstuffs. To assess the ability of bark tannins to prevent lipid oxidation, hot water extracts were evaluated in a liposome model. Isolated tannins were also applied in dry-cured, salty meat snacks either as liquid extracts or in dry-powder form. Consumer acceptance of the snacks was tested by a sensory evaluation panel where outlook, odor, taste, and structure of the snacks were evaluated and compared to a commercial product without tannin ingredients. Our results show that conifer bark tannin-rich extracts have high capacity to prevent lipid oxidation in the liposome model. The efficacies of pine and spruce bark extracts were ten to hundred folds higher, respectively, than those of phenolic berry extracts. The bark extracts did not significantly influence the odor or taste of the meat snacks. The findings indicate that bark extracts may be used as sustainable food ingredients. However, more research is needed to verify their safety.
Asunto(s)
Odorantes , Corteza de la Planta/química , Taninos/química , Tracheophyta/química , Antioxidantes/química , Antioxidantes/farmacología , Aditivos Alimentarios/química , Metabolismo de los Lípidos/efectos de los fármacos , Estructura Molecular , Odorantes/análisis , Oxidación-Reducción/efectos de los fármacos , Fitoquímicos , Extractos Vegetales/química , Extractos Vegetales/farmacologíaRESUMEN
Softwood bark is an important by-product of forest industry. Currently, bark is under-utilized and mainly directed for energy production, although it can be extracted with hot water to obtain compounds for value-added use. In Norway spruce (Picea abies [L.] Karst.) bark, condensed tannins and stilbene glycosides are among the compounds that comprise majority of the antioxidative extractives. For developing feasible production chain for softwood bark extractives, knowledge on raw material quality is critical. This study examined the fate of spruce bark tannins and stilbenes during storage treatment with two seasonal replications (i.e., during winter and summer). In the experiment, mature logs were harvested and stored outside. During six-month-storage periods, samples were periodically collected for chemical analysis from both inner and outer bark layers. Additionally, bark extractives were analyzed for antioxidative activities by FRAP, ORAC, and H2O2 scavenging assays. According to the results, stilbenes rapidly degraded during storage, whereas tannins were more stable: only 5-7% of the original stilbene amount and ca. 30-50% of the original amount of condensed tannins were found after 24-week-storage. Summer conditions led to the faster modification of bark chemistry than winter conditions. Changes in antioxidative activity were less pronounced than those of analyzed chemical compounds, indicating that the derivatives of the compounds contribute to the antioxidative activity. The results of the assays showed that, on average, ca. 27% of the original antioxidative capacity remained 24 weeks after the onset of the storage treatment, while a large variation (2-95% of the original capacity remaining) was found between assays, seasons, and bark layers. Inner bark preserved its activities longer than outer bark, and intact bark attached to timber is expected to maintain its activities longer than a debarked one. Thus, to ensure prolonged quality, no debarking before storage is suggested: outer bark protects the inner bark, and debarking enhances the degradation.
Asunto(s)
Antioxidantes/química , Picea/química , Antioxidantes/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Picea/metabolismo , Corteza de la Planta/química , Corteza de la Planta/metabolismo , Extractos Vegetales/química , Proantocianidinas/química , Estaciones del Año , Estilbenos/química , Factores de TiempoRESUMEN
Developing shoots, i.e., sprouts, and older needles of Norway spruce (Picea abies (L.) Karst.) have traditionally been used for medicinal purposes due to the high content of vitamins and antioxidants. Currently, sprouts are available as, for example, superfood and supplements. However, end-product quality and nutritive value may decline in the value-chain from raw material sourcing to processing and storage. We studied (1) impacts of different drying and extraction methods on nutritional composition and antioxidative properties of sprouts and needles, (2) differences between sprouts and needles in nutritional composition and microbiological quality, and (3) production scale quality of the sprouts. Additionally, (4) sprout powder was applied in products (ice-cream and sorbet) and consumer acceptance was evaluated. According to our results, older needles have higher content of dry matter, energy, and calcium, but lower microbial quality than sprouts. Sprouts showed a higher concentration of vitamin C, magnesium, potassium, and phosphorus than older needles. Freeze-drying was the best drying method preserving the quality of both sprouts and needles, e.g., vitamin C content. The antioxidative activity of the sprout extracts were lower than that of needles. Ethanol-water extraction resulted in a higher content of active compounds in the extract than water extraction. Sensory evaluation of food products revealed that on average, 76% of consumers considered sprout-containing products very good or good, and a creamy product was preferred over a water-based sorbet.
Asunto(s)
Análisis de los Alimentos/métodos , Industria de Alimentos/métodos , Picea/química , Brotes de la Planta/química , Antioxidantes/farmacología , Ácido Ascórbico/química , Finlandia , Manipulación de Alimentos/métodos , Magnesio/química , Noruega , Fósforo/química , Picea/microbiología , Hojas de la Planta/química , Potasio/química , Polvos , VitaminasRESUMEN
Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL : AX balance in response to climate conditions, but whether trees of different species acclimate in AL : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ë 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.
Asunto(s)
Hojas de la Planta/anatomía & histología , Árboles/crecimiento & desarrollo , Madera/anatomía & histología , Europa (Continente) , Geografía , Modelos Estadísticos , Especificidad de la Especie , Árboles/anatomía & histología , Xilema/anatomía & histologíaRESUMEN
Phenolic stilbene glucosides (astringin, isorhapontin, and piceid) and their aglycons commonly accumulate in the phloem of Norway spruce (Picea abies). However, current knowledge about the localization and accumulation of stilbenes within plant tissues and cells remains limited. Here, we used an innovative combination of novel microanalytical techniques to evaluate stilbenes in a frozen-hydrated condition (i.e. in planta) and a freeze-dried condition across phloem tissues. Semiquantitative time-of-flight secondary ion-mass spectrometry imaging in planta revealed that stilbenes were localized in axial parenchyma cells. Quantitative gas chromatography analysis showed the highest stilbene content in the middle of collapsed phloem with decreases toward the outer phloem. The same trend was detected for soluble sugar and water contents. The specimen water content may affect stilbene composition; the glucoside-to-aglycon ratio decreased slightly with decreases in water content. Phloem chemistry was correlated with three-dimensional structures of phloem as analyzed by microtomography. The outer phloem was characterized by a high volume of empty parenchyma, reduced ray volume, and a large number of axial parenchyma with porous vacuolar contents. Increasing porosity from the inner to the outer phloem was related to decreasing compactness of stilbenes and possible secondary oxidation or polymerization. Our results indicate that aging-dependent changes in phloem may reduce cell functioning, which affects the capacity of the phloem to store water and sugar, and may reduce the defense potential of stilbenes in the axial parenchyma. Our results highlight the power of using a combination of techniques to evaluate tissue- and cell-level mechanisms involved in plant secondary metabolite formation and metabolism.
Asunto(s)
Glucósidos/análisis , Floema/química , Picea/química , Estilbenos/análisis , Liofilización , Cromatografía de Gases y Espectrometría de Masas , Glucósidos/metabolismo , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Floema/anatomía & histología , Floema/citología , Picea/anatomía & histología , Picea/citología , Espectrometría de Masa de Ion Secundario/métodos , Estilbenos/metabolismo , Agua/metabolismo , Microtomografía por Rayos X/métodosRESUMEN
Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre-dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.
Asunto(s)
Ósmosis , Picea/fisiología , Pinus sylvestris/fisiología , Corteza de la Planta/fisiología , Hojas de la Planta/fisiología , Ambiente , Fructosa/metabolismo , Glucosa/metabolismo , Concentración Osmolar , Tallos de la Planta/fisiología , Presión , Agua , Xilema/fisiologíaRESUMEN
The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C-1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere.
Asunto(s)
Frío , Tracheophyta , Xilema , Ecosistema , Desarrollo de la Planta , Estaciones del Año , ÁrbolesRESUMEN
MAIN CONCLUSION: Phloem production and structural development were interlinked with seasonal variation in the primary and secondary metabolites of phloem. Novel microtechniques provided new perspectives on understanding phloem structure and chemistry. To gain new insights into phloem formation in Norway spruce (Picea abies), we monitored phloem cell production and seasonal variation in the primary and secondary metabolites of inner bark (non-structural carbohydrates and phenolic stilbene glucosides) during the 2012 growing season in southern and northern Finland. The structure of developing phloem was visualised in 3D by synchrotron X-ray microtomography. The chemical features of developing phloem tissues isolated by laser microdissection were analysed by chemical microanalysis. Within-year phloem formation was associated with seasonal changes in non-structural carbohydrates and phenolic extractive contents of inner bark. The onset of phloem cell production occurred in early and mid-May in southern and northern Finland, respectively. The maximal rate of phloem production and formation of a tangential band of axial phloem parenchyma occurred in mid-June, when total non-structural carbohydrates peaked (due to the high amount of starch). In contrast, soluble sugar content dropped during the most active growth period and increased in late summer and winter. The 3D visualisation showed that the new axial parenchyma clearly enlarged from June to August. Sub-cellular changes appeared to be associated with accumulation of stilbene glucosides and soluble sugars in the newest phloem. Stilbene glucosides also increased in inner bark during late summer and winter. Our findings may indicate that stilbene biosynthesis in older phloem predominantly occurs after the formation of the new band(s) of axial parenchyma. The complementary use of novel microtechniques provides new perspectives on the formation, structure, and chemistry of phloem.
Asunto(s)
Floema/crecimiento & desarrollo , Floema/metabolismo , Picea/crecimiento & desarrollo , Picea/metabolismo , Corteza de la Planta/crecimiento & desarrollo , Corteza de la Planta/metabolismo , Estaciones del AñoRESUMEN
The hydraulic properties of xylem and phloem differ but the magnitude and functional consequences of the differences are not well understood. Phloem and xylem functional areas, hydraulic conduit diameters and conduit frequency along the stems of Picea abies trees were measured and expressed as allometric functions of stem diameter and distance from stem apex. Conductivities of phloem and xylem were estimated from these scaling relations. Compared with xylem, phloem conduits were smaller and occupied a slightly larger fraction of conducting tissue area. Ten times more xylem than phloem was annually produced along the stem. Scaling of the conduit diameters and cross-sectional areas with stem diameter were very similar in phloem and xylem. Phloem and xylem conduits scaled also similarly with distance from stem apex; widening downwards from the tree top, and reaching a plateau near the base of the living crown. Phloem conductivity was estimated to scale similarly to the conductivity of the outermost xylem ring, with the ratio of phloem to xylem conductivity being c. 2%. However, xylem conductivity was estimated to increase more than phloem conductivity with increasing tree dimensions as a result of accumulation of xylem sapwood. Phloem partly compensated for its smaller conducting area and narrower conduits by having a slightly higher conduit frequency.
Asunto(s)
Floema/fisiología , Picea/fisiología , Tallos de la Planta/fisiología , Agua/metabolismo , Xilema/fisiología , Floema/anatomía & histología , Picea/anatomía & histología , Xilema/anatomía & histologíaRESUMEN
Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.
Asunto(s)
Tracheophyta , Temperatura , Ecosistema , Cambio Climático , Xilema , Estaciones del Año , ÁrbolesRESUMEN
As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.
Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Bosques , Estaciones del Año , Tracheophyta , Madera , Carbono/metabolismo , Madera/metabolismo , Madera/química , Tracheophyta/metabolismo , Biomasa , Ecosistema , Ciclo del Carbono , Árboles/metabolismoRESUMEN
A decline in the carbon content of agricultural soils has been reported globally. Amendments of forest industry side-streams might counteract this. We tested the effects of industrial conifer bark and its cascade process materials on the soil microbiome under barley (Hordeum vulgare L.) in clay and silt soil microcosms for 10 months, simulating the seasonal temperature changes of the boreal region. Microbial gene copy numbers were higher in clay soils than in silt. All amendments except unextracted bark increased bacterial gene copies in both soils. In turn, all other amendments, but not unextracted bark from an anaerobic digestion process, increased fungal gene copy numbers in silt soil. In clay soil, fungal increase occurred only with unextracted bark and hot water extracted bark. Soil, amendment type and simulated season affected both the bacterial and fungal community composition. Amendments increased bacteria originating from the anaerobic digestion process, as well as dinitrogen fixers and decomposers of plant cells. In turn, unextracted and hot water extracted bark determined the fungal community composition in silt. As fungal abundance increase and community diversification are related to soil carbon acquisition, bark-based amendments to soils can thus contribute to sustainable agriculture.
Asunto(s)
Microbiota , Suelo , Arcilla , Corteza de la Planta , Microbiología del Suelo , Bacterias/genética , Carbono , AguaRESUMEN
Demand for low- or non-alcoholic beers has been growing in recent years. Thus, research is increasingly focusing on non-Saccharomyces species that typically are only able to consume the simple sugars in wort, and therefore have a limited production of alcohol. In this project, new species and strains of non-conventional yeasts were sampled and identified from Finnish forest environments. From this wild yeast collection, a number of Mrakia gelida strains were selected for small-scale fermentation tests and compared with a reference strain, the low-alcohol brewing yeast Saccharomycodes ludwigii. All the M. gelida strains were able to produce beer with an average of 0.7% alcohol, similar to the control strain. One M. gelida strain showing the most promising combination of good fermentation profile and production of desirable flavor active compounds was selected for pilot-scale (40 L) fermentation. The beers produced were matured, filtered, carbonated, and bottled. The bottled beers were then directed for in-house evaluation, and further analyzed for sensory profiles. The beers produced contained 0.6% Alcohol by volume (ABV). According to the sensory analysis, the beers were comparable to those produced by S. ludwigii, and contained detectable fruit notes (banana and plum). No distinct off-flavors were noted. A comprehensive analysis of M. gelida's resistance to temperature extremes, disinfectant, common preservatives, and antifungal agents would suggest that the strains pose little risk to either process hygiene or occupational safety.
RESUMEN
Introduction: Recurring viral outbreaks have a significant negative impact on society. This creates a need to develop novel strategies to complement the existing antiviral approaches. There is a need for safe and sustainable antiviral solutions derived from nature. Objective: This study aimed to investigate the antiviral potential of willow (Salix spp.) bark hot water extracts against coronaviruses and enteroviruses. Willow bark has long been recognized for its medicinal properties and has been used in traditional medicines. However, its potential as a broad-spectrum antiviral agent remains relatively unexplored. Methods: Cytopathic effect inhibition assay and virucidal and qPCR-based assays were used to evaluate the antiviral potential of the bark extracts. The mechanism of action was investigated using time-of-addition assay, confocal microscopy, TEM, thermal, and binding assays. Extracts were fractionated and screened for their chemical composition using high-resolution LC-MS. Results: The native Salix samples demonstrated their excellent antiviral potential against the non-enveloped enteroviruses even at room temperature and after 45 s. They were equally effective against the seasonal and pandemic coronaviruses. Confocal microscopy verified the loss of infection capacity by negligible staining of the newly synthesized capsid or spike proteins. Time-of-addition studies demonstrated that Salix bark extract had a direct effect on the virus particles but not through cellular targets. Negative stain TEM and thermal assay showed that antiviral action on enteroviruses was based on the added stability of the virions. In contrast, Salix bark extract caused visible changes in the coronavirus structure, which was demonstrated by the negative stain TEM. However, the binding to the cells was not affected, as verified by the qPCR study. Furthermore, coronavirus accumulated in the cellular endosomes and did not proceed after this stage, based on the confocal studies. None of the tested commercial reference samples, such as salicin, salicylic acid, picein, and triandrin, had any antiviral activity. Fractionation of the extract and subsequent MS analysis revealed that most of the separated fractions were very effective against enteroviruses and contained several different chemical groups such as hydroxycinnamic acid derivatives, flavonoids, and procyanidins. Conclusion: Salix spp. bark extracts contain several virucidal agents that are likely to act synergistically and directly on the viruses.