Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38530010

RESUMEN

The theory of analytic gradients is presented for the projector-based density functional theory (DFT) embedding approach utilizing the Huzinaga-equation. The advantages of the Huzinaga-equation-based formulation are demonstrated. In particular, it is shown that the projector employed does not appear in the Lagrangian, and the potential risk of numerical problems is avoided at the evaluation of the gradients. The efficient implementation of the analytic gradient theory is presented for approaches where hybrid DFT, second-order Møller-Plesset perturbation theory, or double hybrid DFT are embedded in lower-level DFT environments. To demonstrate the applicability of the method and to gain insight into its accuracy, it is applied to equilibrium geometry optimizations, transition state searches, and potential energy surface scans. Our results show that bond lengths and angles converge rapidly with the size of the embedded system. While providing structural parameters close to high-level quality for the embedded atoms, the embedding approach has the potential to relax the coordinates of the environment as well. Our demonstrations on a 171-atom zeolite and a 570-atom protein system show that the Huzinaga-equation-based embedding can accelerate (double) hybrid gradient computations by an order of magnitude with sufficient active regions and enables affordable force evaluations or geometry optimizations for molecules of hundreds of atoms.

2.
J Am Chem Soc ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752773

RESUMEN

Herein, we present high-yielding, concise access to a set of xanthenium-derived, water-soluble, low-molecular-weight photocages allowing light-controlled cargo release in the green to red region. Very importantly, these new photocages allow installation of various payloads through ester, carbamate, or carbonate linkages even at the last stage of the synthesis. Payloads were uncaged with high efficiency upon green, orange, or red light irradiation, leading to the release of carboxylic acids, phenols, and amines. The near-ideal properties of a carboxanthenium derivative were further evaluated in the context of light-controlled drug release using a camptothecin-derived chemotherapeutic drug, SN38. Notably, the caged drug showed orders of magnitude lower efficiency in cellulo, which was reinstated after red light irradiation. The presented photocages offer properties that facilitate the translation of photoactivated chemotherapy toward clinical applications.

3.
J Chem Phys ; 158(2): 024110, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641408

RESUMEN

We present analytic gradients for local density fitting Hartree-Fock (HF) and hybrid Kohn-Sham (KS) density functional methods. Due to the non-variational nature of the local fitting algorithm, the method of Lagrange multipliers is used to avoid the solution of the coupled perturbed HF and KS equations. We propose efficient algorithms for the solution of the arising Z-vector equations and the gradient calculation that preserve the third-order scaling and low memory requirement of the original local fitting algorithm. In order to demonstrate the speed and accuracy of our implementation, gradient calculations and geometry optimizations are presented for various molecular systems. Our results show that significant speedups can be achieved compared to conventional density fitting calculations without sacrificing accuracy.

4.
J Phys Chem A ; 126(15): 2417-2429, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35394778

RESUMEN

In this work, we implemented the embedded cluster reference interaction site model (EC-RISM) originally developed by Kloss, Heil, and Kast (J. Phys. Chem. B 2008, 112, 4337-4343). This method combines quantum mechanical calculations with the 3D reference interaction site model (3D-RISM). Numerous options, such as buffer, grid space, basis set, charge model, water model, closure relation, and so forth, were investigated to find the best settings. Additionally, the small point charges, which are derived from the solvent distribution from the 3D-RISM solution to represent the solvent in the QM calculation, were neglected to reduce the overhead without the loss of accuracy. On the MNSOL[a], MNSOL, and FreeSolv databases, our implemented and optimized method provides solvation free energies in water with 5.70, 6.32, and 6.44 kJ/mol root-mean-square deviations, respectively, but with different settings, 5.22, 6.08, and 6.63 kJ/mol can also be achieved. Only solvent models containing fitting parameters, like COSMO-RS and EC-RISM with universal correction and directly used electrostatic potential, perform better than our EC-RISM implementation with atomic charges.

5.
J Phys Chem A ; 126(37): 6548-6557, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36095318

RESUMEN

The performance of multilevel quantum chemical approaches, which utilize an atom-based system partitioning scheme to model various electronic excited states, is studied. The considered techniques include the mechanical-embedding (ME) of "our own N-layered integrated molecular orbital and molecular mechanics" (ONIOM) method, the point charge embedding (PCE), the electronic-embedding (EE) of ONIOM, the frozen density-embedding (FDE), the projector-based embedding (PbE), and our local domain-based correlation method. For the investigated multilevel approaches, the second-order algebraic-diagrammatic construction [ADC(2)] approach was utilized as the high-level method, which was embedded in either Hartree-Fock or a density functional environment. The XH-27 test set of Zech et al. [ J. Chem. Theory Comput., 2018, 14, 4028] was used for the assessment, where organic dyes interact with several solvent molecules. With the selection of the chromophores as active subsystems, we conclude that the most reliable approach is local domain-based ADC(2) [L-ADC(2)], and the least robust schemes are ONIOM-ME and ONIOM-EE. The PbE, FDE, and PCE techniques often approach the accuracy of the L-ADC(2) scheme, but their precision is far behind. The results suggest that a more conservative subsystem selection algorithm or the inclusion of subsystem charge-transfers is required for the atom-based cost-efficient methods to produce high-accuracy excitation energies.

6.
J Chem Phys ; 154(16): 164114, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33940810

RESUMEN

Several approaches are presented to improve the efficiency of Hartree-Fock and Kohn-Sham self-consistent field (SCF) calculations relying on a simple first-order energy correction reminiscent of the scheme used in dual-basis SCF methods. The basic idea is to perform an initial SCF calculation computing approximate Fock-matrices and, in the final iteration step, to use a more complete Fock-matrix builder together with the energy correction to diminish the error. The approximation is tested for conventional and local density fitting (DF) SCF approaches combining various auxiliary basis sets, fitting metrics, and Fock-matrix construction algorithms in the initial and final iterations as well as for seminumerical SCF methods combining integration grids of different qualities. We also report the implementation of the occupied orbital resolution of identity exchange construction algorithm with local DF approximations. Benchmark calculations are presented for total energies, reaction energies, and molecular geometries. Our results show that speedups of up to 80% can be expected utilizing the new approaches without significant loss of accuracy.

7.
J Chem Phys ; 155(3): 034107, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293884

RESUMEN

A new approach is proposed to reduce the basis set incompleteness error of the triple excitation correction in explicitly correlated coupled-cluster singles and doubles with perturbative triples calculations. Our method is similar to the intuitive triples correction approach of Knizia et al. [J. Chem. Phys. 130, 054104 (2009)] but, in contrast to the latter, is size-consistent. The new approximation is easy to implement, and its overhead is negligible with respect to the conventional (T) correction. The performance of the approach is assessed for atomization, reaction, and interaction energies as well as for bond lengths and harmonic vibrational frequencies. The advantages of its size consistency are also demonstrated.

8.
J Am Chem Soc ; 142(35): 15164-15171, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786783

RESUMEN

The proof of concept for conditionally activatable photocages is demonstrated on a new vinyltetrazine-derivatized coumarin. The tetrazine form is disabled in terms of light-induced cargo release, however, bioorthogonal transformation of the modulating tetrazine moiety results in fully restored photoresponsivity. Irradiation of such a "click-armed" photocage with blue light leads to fast and efficient release of a set of caged model species, conjugated via various linkages. Live-cell applicability of the concept was also demonstrated by the conditional release of a fluorogenic probe using mitochondrial pretargeting.

9.
J Chem Phys ; 152(7): 074107, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087669

RESUMEN

MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller-Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation. The package also offers a collection of multi-reference CC and CI approaches. Efficient implementations of density functional theory (DFT) and more advanced combined DFT-wave function approaches are also available. Its other special features, the highly competitive linear-scaling local correlation schemes, allow for MP2, RPA, ADC(2), CCSD(T), and higher-order CC calculations for extended systems. Local correlation calculations can be considerably accelerated by multi-level approximations and DFT-embedding techniques, and an interface to molecular dynamics software is provided for quantum mechanics/molecular mechanics calculations. All components of MRCC support shared-memory parallelism, and multi-node parallelization is also available for various methods. For academic purposes, the package is available free of charge.


Asunto(s)
Teoría Funcional de la Densidad , Proteínas/química , Agua/química , Electrones , Simulación de Dinámica Molecular , Estructura Molecular
10.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153219

RESUMEN

In order to explore how cucurbituril hosts accommodate an N-phenyl-pyridinium derivative guest, the complexation of the solvatochromic dye, 4-(4-(dimethylamino)styryl)-1-phenylpyridinium iodide (PhSt) with ,',δ,δ'-tetramethyl-cucurbit[6]uril (Me4CB6) and cucurbit[7]uril (CB7) was investigated by absorption spectroscopic, fluorescence and NMR experiments. In aqueous solutions, PhSt forms 1:1 complexes with both cucurbiturils, the complex with CB7 has a higher stability constant (Ka = 6.0 × 106 M-1) than the complex with Me4CB6 (Ka = 1.1 × 106 M-1). As revealed by NMR experiments and confirmed by theoretical calculations, CB7 encapsulates the whole phenylpyridinium entity of the PhSt cation guest, whereas the cavity of Me4CB6 includes only the phenyl ring, the pyridinium ring is bound to the carbonyl rim of the host. The binding of PhSt to cucurbiturils is accompanied by a strong enhancement of the fluorescence quantum yield due to the blocking of the deactivation through a twisted intramolecular charge transfer (TICT) state. The TICT mechanism in PhSt was characterized by fluorescence experiments in polyethylene glycol (PEG) solvents of different viscosities. The PhSt-CB7 system was tested as a fluorescence indicator displacement (FID) assay, and it recognized trimethyl-lysine selectively over other lysine derivatives.


Asunto(s)
Colorantes Fluorescentes/química , Compuestos Macrocíclicos/química , Modelos Moleculares , Piridinas/química , Espectrometría de Fluorescencia
11.
J Phys Chem A ; 123(18): 4057-4067, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-30977653

RESUMEN

The goal of this study is to give reliable and accurate thermochemical data for uracil, thymine, cytosine, and adenine. The gas-phase heats of formation of these compounds were determined with the diet-HEAT-F12 protocol, which uses explicitly correlated coupled-cluster calculations along with anharmonic vibrational, scalar relativistic, and diagonal Born-Oppenheimer corrections. The thermochemically relevant tautomers of cytosine were also investigated. To derive heats of formation in the gas and solid phases as well as sublimation enthalpies, the thermochemical network approach was utilized, i.e., the available literature data were collected, reviewed, and combined with our theoretical calculations. Solvation free energies were also determined with various methods and compared to experimental data.


Asunto(s)
Adenina/química , Citosina/química , Temperatura , Timina/química , Uracilo/química , Teoría Cuántica
12.
Phys Chem Chem Phys ; 20(15): 10155-10164, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29589611

RESUMEN

The excited state processes in N-propyl-4-piperidinyl-1,8-naphthalimide have been studied by measuring its fluorescence spectra and decay curves in solvents of different polarity and viscosity and also in a frozen solvent glass. The results unanimously proved the formation of a dark twisted intramolecular charge transfer (TICT) state from the emissive charge transfer (CT) species, the direct product of excitation. The rate coefficients of the TICT process and the deactivations of the CT and TICT species were determined, using a reversible two-state kinetic model. The temperature dependence of the kinetic data was consistent with a kinetic barrier consisting of three terms, the inherent barrier of the reaction, and the contributions of the solute-solvent interactions related to the solvent viscosity and polarity. The potential energy surfaces were calculated in the S0 and the S1 states along the coordinate of turning motion which was conclusive concerning the direction of the twisting and indicated a possible conformational change of the piperidinyl unit. The theoretical calculations confirmed that the TICT species is dark and has a stronger charge transfer character compared to the CT state.

13.
J Phys Chem A ; 122(28): 5993-6006, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29939026

RESUMEN

Reliable heats of formation are reported for numerous fluorinated and chlorinated methane and ethane derivatives by means of an accurate thermochemical protocol, which involves explicitly correlated coupled-cluster calculations augmented with anharmonic, scalar relativistic, and diagonal Born-Oppenheimer corrections. The theoretical results, along with additional experimental data, are further enhanced with the help of the thermochemical network approach. For 28 species, out of 50, this study presents the best estimates, and discrepancies with previous reports are also highlighted. Furthermore, the effects of the less accurate theoretical data on the results yielded by thermochemical networks are discussed.

14.
J Chem Phys ; 149(12): 124101, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30278674

RESUMEN

The calculation of the geometrical derivatives of three-center electron repulsion integrals (ERIs) over contracted spherical harmonic Gaussians has been optimized. We compared various methods based on the Obara-Saika, McMurchie-Davidson, Gill-Head-Gordon-Pople, and Rys polynomial algorithms using Cartesian, Hermite, and mixed Gaussian integrals for each scheme. The latter ERIs contain both Hermite and Cartesian Gaussians, and they combine the advantageous properties of both types of basis functions. Furthermore, prescreening of the ERI derivatives is discussed, and an efficient approximation of the Cauchy-Schwarz bound for first derivatives is presented. Based on the estimated operation counts, the most promising schemes were implemented by automated code generation, and their relative performances were evaluated. We analyzed the benefits of computing all of the derivatives of a shell triplet simultaneously compared to calculating them just for one degree of freedom at a time, and it was found that the former scheme offers a speedup close to an order of magnitude with a triple-zeta quality basis when appropriate prescreening is applied. In these cases, the Obara-Saika method with Cartesian Gaussians proved to be the best approach, but when derivatives for one degree of freedom are required at a time the mixed Gaussian Obara-Saika and Gill-Head-Gordon-Pople algorithms are predicted to be the best performing ones.

15.
J Chem Phys ; 148(12): 124108, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29604813

RESUMEN

A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.

16.
Beilstein J Org Chem ; 14: 747-755, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719572

RESUMEN

Background: Nucleotides are essential molecules in living systems due to their paramount importance in various physiological processes. In the past years, numerous attempts were made to selectively recognize and detect these analytes, especially ATP using small-molecule fluorescent chemosensors. Despite the various solutions, the selective detection of ATP is still challenging due to the structural similarity of various nucleotides. In this paper, we report the conjugation of a uracil nucleobase to the known 4'-dimethylamino-hydroxyflavone fluorophore. Results: The complexation of this scaffold with ATP is already known. The complex is held together by stacking and electrostatic interactions. To achieve multi-point recognition, we designed the uracil-appended version of this probe to include complementary base-pairing interactions. The theoretical calculations revealed the availability of multiple complex structures. The synthesis was performed using click chemistry and the nucleotide recognition properties of the probe were evaluated using fluorescence spectroscopy. Conclusions: The first, uracil-containing fluorescent ATP probe based on a hydroxyflavone fluorophore was synthesized and evaluated. A selective complexation with ATP was observed and a ratiometric response in the excitation spectrum.

17.
J Phys Chem A ; 121(5): 1153-1162, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28071901

RESUMEN

An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

18.
J Chem Phys ; 146(20): 204101, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28571354

RESUMEN

In this study we pursue the most efficient paths for the evaluation of three-center electron repulsion integrals (ERIs) over solid harmonic Gaussian functions of various angular momenta. First, the adaptation of the well-established techniques developed for four-center ERIs, such as the Obara-Saika, McMurchie-Davidson, Gill-Head-Gordon-Pople, and Rys quadrature schemes, and the combinations thereof for three-center ERIs is discussed. Several algorithmic aspects, such as the order of the various operations and primitive loops as well as prescreening strategies, are analyzed. Second, the number of floating point operations (FLOPs) is estimated for the various algorithms derived, and based on these results the most promising ones are selected. We report the efficient implementation of the latter algorithms invoking automated programming techniques and also evaluate their practical performance. We conclude that the simplified Obara-Saika scheme of Ahlrichs is the most cost-effective one in the majority of cases, but the modified Gill-Head-Gordon-Pople and Rys algorithms proposed herein are preferred for particular shell triplets. Our numerical experiments also show that even though the solid harmonic transformation and the horizontal recurrence require significantly fewer FLOPs if performed at the contracted level, this approach does not improve the efficiency in practical cases. Instead, it is more advantageous to carry out these operations at the primitive level, which allows for more efficient integral prescreening and memory layout.

19.
J Chem Phys ; 146(19): 194102, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28527453

RESUMEN

A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller-Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets.

20.
J Chem Phys ; 146(21): 214106, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28576082

RESUMEN

An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA