Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(7): e3001718, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35882230

RESUMEN

Suppression of recombination along the Y chromosome leads to its degeneration, so why does a process with such potentially deleterious consequences arise? In this issue of PLOS Biology, a new model reveals how and why this might be.


Asunto(s)
Cromosomas Sexuales , Cromosoma Y , Mutación , Recombinación Genética , Cromosomas Sexuales/genética
2.
Ecol Lett ; 26(4): 640-657, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36829296

RESUMEN

Variation in species richness across the tree of life, accompanied by the incredible variety of ecological and morphological characteristics found in nature, has inspired many studies to link traits with species diversification. Angiosperms are a highly diverse group that has fundamentally shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem functioning. Numerous traits and processes have been linked to differences in species richness within this group, but we know little about their relative importance and how they interact. Here, we synthesised data from 152 studies that used state-dependent speciation and extinction (SSE) models on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to diversification but a set of universal drivers did not emerge as traits did not have consistent effects across clades. Importantly, SSE model results were correlated to data set properties - trees that were larger, older or less well-sampled tended to yield trait-dependent outcomes. We compared these properties to recommendations for SSE model use and provide a set of best practices to follow when designing studies and reporting results. Finally, we argue that SSE model inferences should be considered in a larger context incorporating species' ecology, demography and genetics.


Asunto(s)
Evolución Biológica , Magnoliopsida , Filogenia , Ecosistema , Magnoliopsida/genética , Fenotipo , Especiación Genética , Biodiversidad
3.
Genome Res ; 30(2): 164-172, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32033943

RESUMEN

Cannabis sativa-derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. C. sativa is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the C. sativa genome projects have failed to do so. Moreover, as dioecy in the Cannabaceae family is ancestral, C. sativa sex chromosomes are potentially old and thus very interesting to study, as little is known about old plant sex chromosomes. Here, we RNA-sequenced a C. sativa family (two parents and 10 male and female offspring, 576 million reads) and performed a segregation analysis for all C. sativa genes using the probabilistic method SEX-DETector. We identified >500 sex-linked genes. Mapping of these sex-linked genes to a C. sativa genome assembly identified the largest chromosome pair being the sex chromosomes. We found that the X-specific region (not recombining between X and Y) is large compared to other plant systems. Further analysis of the sex-linked genes revealed that C. sativa has a strongly degenerated Y Chromosome and may represent the oldest plant sex chromosome system documented so far. Our study revealed that old plant sex chromosomes can have large, highly divergent nonrecombining regions, yet still be roughly homomorphic.


Asunto(s)
Cannabis/genética , Segregación Cromosómica/genética , Evolución Molecular , Procesos de Determinación del Sexo/genética , Cannabis/crecimiento & desarrollo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Dronabinol/biosíntesis , Genoma de Planta/genética , RNA-Seq , Cromosomas Sexuales/genética
4.
Syst Biol ; 71(3): 758-773, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34613395

RESUMEN

Estimating time-dependent rates of speciation and extinction from dated phylogenetic trees of extant species (timetrees), and determining how and why they vary, is key to understanding how ecological and evolutionary processes shape biodiversity. Due to an increasing availability of phylogenetic trees, a growing number of process-based methods relying on the birth-death model have been developed in the last decade to address a variety of questions in macroevolution. However, this methodological progress has regularly been criticized such that one may wonder how reliable the estimations of speciation and extinction rates are. In particular, using lineages-through-time (LTT) plots, a recent study has shown that there are an infinite number of equally likely diversification scenarios that can generate any timetree. This has led to questioning whether or not diversification rates should be estimated at all. Here, we summarize, clarify, and highlight technical considerations on recent findings regarding the capacity of models to disentangle diversification histories. Using simulations, we illustrate the characteristics of newly proposed "pulled rates" and their utility. We recognize that the recent findings are a step forward in understanding the behavior of macroevolutionary modeling, but they in no way suggest we should abandon diversification modeling altogether. On the contrary, the study of macroevolution using phylogenetic trees has never been more exciting and promising than today. We still face important limitations in regard to data availability and methods, but by acknowledging them we can better target our joint efforts as a scientific community. [Birth-death models; extinction; phylogenetics; speciation.].


Asunto(s)
Biodiversidad , Especiación Genética , Evolución Biológica , Filogenia , Tiempo
5.
New Phytol ; 233(4): 1636-1642, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34342006

RESUMEN

The genetic basis and evolution of sex determination in dioecious plants is emerging as an active area of research with exciting advances in genome sequencing and analysis technologies. As the sole species within the sister lineage to all other extant flowering plants, Amborella trichopoda is an important model for understanding the evolution and development of flowers. Plants typically produce only male or female flowers, but sex determination mechanisms are unknown for the species. Sequence data derived from plants of natural origin and an F1 mapping population were used to identify sex-linked genes and the nonrecombining region. Amborella trichopoda has a ZW sex determination system. Analysis of genes in a 4 Mb nonrecombining sex-determination region reveals recent divergence of Z and W gametologs, and few Z- and W-specific genes. The sex chromosomes of A. trichopoda evolved less than 16.5 Myr ago, long after the divergence of the extant angiosperms.


Asunto(s)
Magnoliopsida , Flores/genética , Magnoliopsida/genética , Filogenia , Cromosomas Sexuales/genética
6.
New Phytol ; 231(4): 1599-1611, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33978992

RESUMEN

We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.


Asunto(s)
Cannabis , Humulus , Cannabis/genética , Cromosomas de las Plantas/genética , Evolución Molecular , Humulus/genética , Filogenia , Cromosomas Sexuales/genética
7.
Mol Ecol ; 26(5): 1225-1241, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28101895

RESUMEN

Dioecy, the coexistence of separate male and female individuals in a population, is a rare but phylogenetically widespread sexual system in flowering plants. While research has concentrated on why and how dioecy evolves from hermaphroditism, the question of why dioecy is rare, despite repeated transitions to it, has received much less attention. Previous phylogenetic and theoretical studies have suggested that dioecy might be an evolutionary dead end. However, recent research indicates that the phylogenetic support for this hypothesis is attributable to a methodological bias and that there is no evidence for reduced diversification in dioecious angiosperms. The relative rarity of dioecy thus remains a puzzle. Here, we review evidence for the hypothesis that dioecy might be rare not because it is an evolutionary dead end, but rather because it easily reverts to hermaphroditism. We review what is known about transitions between hermaphroditism and dioecy, and conclude that there is an important need to consider more widely the possibility of transitions away from dioecy, both from an empirical and a theoretical point of view, and by combining tools from molecular evolution and insights from ecology.


Asunto(s)
Evolución Biológica , Magnoliopsida/genética , Magnoliopsida/fisiología , Evolución Molecular , Filogenia , Reproducción
8.
Syst Biol ; 63(4): 601-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24671619

RESUMEN

Comparing species richness in sister clades that differ in a character state is one of the ways to study factors influencing diversification. While most of its applications have focussed on traits that increase diversification, some have been used to study the association of a trait with lower species richness, e.g., the occurrence of dioecy in flowering plants. We show here, using simulations and an analytical model, that the null expectation of equal species richness that is generally used in sister clade comparisons is wrong in the case of a derived trait occurring independently from speciation: one should expect fewer species in the clade with the derived character state when there is no difference in diversification rates. This is due to the waiting time for the derived state to appear, which causes it to occur more often on longer branches. This has the important implication that the probability for a clade to possess the derived state depends on the tree geometry, and thus on species richness: species-poorer clades are more likely to possess the derived state. We develop a statistical test for sister clade comparisons to study the effect of a derived character state. Applying it to a data set of dioecious clades, we find that we cannot confirm earlier work that concluded that dioecy decreases diversification; on the contrary, it seems to be associated to higher species richness than expected. [angiosperms; dioecy; diversification; sister clades; species richness.].


Asunto(s)
Clasificación/métodos , Modelos Teóricos , Filogenia , Biodiversidad , Simulación por Computador , Magnoliopsida/clasificación , Fenotipo , Especificidad de la Especie
9.
iScience ; 26(4): 106362, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37034980

RESUMEN

Species diversity can vary dramatically across lineages due to differences in speciation and extinction rates. Here, we explore the effects of several plant traits on diversification, finding that most traits have opposing effects on diversification. For example, outcrossing may increase the efficacy of selection and adaptation but also decrease mate availability, two processes with contrasting effects on lineage persistence. Such opposing trait effects can manifest as differences in diversification rates that depend on ecological context, spatiotemporal scale, and associations with other traits. The complexity of pathways linking traits to diversification suggests that the mechanistic underpinnings behind their correlations may be difficult to interpret with any certainty, and context dependence means that the effects of specific traits on diversification are likely to differ across multiple lineages and timescales. This calls for taxonomically and context-controlled approaches to studies that correlate traits and diversification.

10.
Proc Natl Acad Sci U S A ; 106(41): 17271-5, 2009 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-19805170

RESUMEN

Cell aggregates are a tool for in vitro studies of morphogenesis, cancer invasion, and tissue engineering. They respond to mechanical forces as a complex rather than simple liquid. To change an aggregate's shape, cells have to overcome energy barriers. If cell shape fluctuations are active enough, the aggregate spontaneously relaxes stresses ("fluctuation-induced flow"). If not, changing the aggregate's shape requires a sufficiently large applied stress ("stress-induced flow"). To capture this distinction, we develop a mechanical model of aggregates based on their cellular structure. At stress lower than a characteristic stress tau*, the aggregate as a whole flows with an apparent viscosity eta*, and at higher stress it is a shear-thinning fluid. An increasing cell-cell tension results in a higher eta* (and thus a slower stress relaxation time t(c)). Our constitutive equation fits experiments of aggregate shape relaxation after compression or decompression in which irreversibility can be measured; we find t(c) of the order of 5 h for F9 cell lines. Predictions also match numerical simulations of cell geometry and fluctuations. We discuss the deviations from liquid behavior, the possible overestimation of surface tension in parallel-plate compression measurements, and the role of measurement duration.


Asunto(s)
Agregación Celular/fisiología , Células/citología , Animales , Fenómenos Biomecánicos/fisiología , Ciclo Celular/fisiología , Línea Celular Tumoral/citología , Línea Celular Tumoral/fisiología , Tamaño de la Célula , Fuerza Compresiva , Elasticidad , Emulsiones , Ratones , Estrés Mecánico , Viscosidad
11.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210216, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35306891

RESUMEN

Here, we review the literature on sexual lability in dioecious angiosperm species with well-studied sex chromosomes. We distinguish three types of departures from strict dioecy, concerning either a minority of flowers in some individuals (leakiness) or the entire individual, which can constantly be bisexual or change sex. We found that for only four of the 22 species studied, reports of lability are lacking. The occurrence of lability is only weakly related to sex chromosome characteristics (number of sex-linked genes, age of the non-recombining region). These results contradict the naive idea that lability is an indication of the absence or the recent evolution of sex chromosomes, and thereby contribute to a growing consensus that sex chromosomes do not necessarily fix sex determination once and for all. We discuss some implications of these findings for the evolution of sex chromosomes, and suggest that more species with well-characterized lability should be studied with genomic data and tools. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Asunto(s)
Magnoliopsida , Evolución Molecular , Flores/genética , Humanos , Magnoliopsida/genética , Cromosomas Sexuales/genética
12.
Phys Rev Lett ; 107(16): 168304, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22107435

RESUMEN

We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with √A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Δn and ΔA are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.


Asunto(s)
Teoría de la Probabilidad , Modelos Moleculares , Conformación Molecular , Temperatura
13.
Genetics ; 218(2)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33764439

RESUMEN

We propose a method, SDpop, able to infer sex-linkage caused by recombination suppression typical of sex chromosomes. The method is based on the modeling of the allele and genotype frequencies of individuals of known sex in natural populations. It is implemented in a hierarchical probabilistic framework, accounting for different sources of error. It allows statistical testing for the presence or absence of sex chromosomes, and detection of sex-linked genes based on the posterior probabilities in the model. Furthermore, for gametologous sequences, the haplotype and level of nucleotide polymorphism of each copy can be inferred, as well as the divergence between them. We test the method using simulated data, as well as data from both a relatively recent and an old sex chromosome system (the plant Silene latifolia and humans) and show that, for most cases, robust predictions are obtained with 5 to 10 individuals per sex.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas Humanos/genética , Cromosomas de las Plantas/genética , Cromosomas Sexuales/genética , Genes de Plantas , Genes Ligados a X , Genes Ligados a Y , Haplotipos , Humanos , Modelos Genéticos , Polimorfismo Genético , Recombinación Genética , Silene/genética
14.
Biology (Basel) ; 10(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34356512

RESUMEN

Copepods are among the most numerous animals, and they play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest density of copepods. The Oithona male paradox describes the activity states of males, which are obliged to alternate between immobile and mobile phases for ambush feeding and mate searching, respectively, while the female is less mobile and feeds less. To characterize the molecular basis of this sexual dimorphism, we combined immunofluorescence, genomics, transcriptomics, and protein-protein interaction approaches and revealed the presence of a male-specific nervous ganglion. Transcriptomic analysis showed male-specific enrichment for nervous system development-related transcripts. Twenty-seven Lin12-Notch Repeat domain-containing protein coding genes (LDPGs) of the 75 LDPGs identified in the genome were specifically expressed in males. Furthermore, some LDPGs coded for proteins with predicted proteolytic activity, and proteases-associated transcripts showed a male-specific enrichment. Using yeast double-hybrid assays, we constructed a protein-protein interaction network involving two LDPs with proteases, extracellular matrix proteins, and neurogenesis-related proteins. We also hypothesized possible roles of the LDPGs in the development of the lateral ganglia through helping in extracellular matrix lysis, neurites growth guidance, and synapses genesis.

15.
Phys Rev Lett ; 105(12): 128101, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20867675

RESUMEN

When spreading onto a protein microlattice living cells spontaneously acquire simple shapes determined by the lattice geometry. This suggests that, on a lattice, living cells' shapes are in thermodynamic metastable states. Using a model at thermodynamic equilibrium we are able to reproduce the observed shapes. We build a phase diagram based on two adimensional parameters characterizing essential cellular properties involved in spreading: the cell's compressibility and fluctuations.


Asunto(s)
Citoesqueleto/ultraestructura , Proteínas de la Matriz Extracelular/metabolismo , Actinas/metabolismo , Fenómenos Biomecánicos , Adhesión Celular/fisiología , Forma de la Célula/fisiología , Fuerza Compresiva , Citoesqueleto/metabolismo , Elasticidad , Modelos Biológicos , Método de Montecarlo , Termodinámica
16.
Proc Natl Acad Sci U S A ; 104(47): 18549-54, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18003929

RESUMEN

Because of the resemblance of many epithelial tissues to densely packed soap bubbles, it has been suggested that surface minimization, which drives soap bubble packing, could be governing cell packing as well. We test this by modeling the shape of the cells in a Drosophila retina ommatidium. We use the observed configurations and shapes in wild-type flies, as well as in flies with different numbers of cells per ommatidia, and mutants with cells where E- or N-cadherin is either deleted or misexpressed. We find that surface minimization is insufficient to model the experimentally observed shapes and packing of the cells based on their cadherin expression. We then consider a model in which adhesion leads to a surface increase, balanced by cell cortex contraction. Using the experimentally observed distributions of E- and N-cadherin, we simulate the packing and cell shapes in the wild-type eye. Furthermore, by changing only the corresponding parameters, this model can describe the mutants with different numbers of cells or changes in cadherin expression.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Retina/citología , Retina/embriología , Animales , Animales Modificados Genéticamente , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Simulación por Computador , Drosophila melanogaster/metabolismo , Modelos Biológicos , Mutación/genética , Retina/metabolismo
17.
Genome Biol ; 21(1): 223, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892750

RESUMEN

BACKGROUND: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. RESULTS: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. CONCLUSIONS: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.


Asunto(s)
Domesticación , Genoma de Planta , Procesos de Determinación del Sexo , Vitis/genética , Haplotipos , Infertilidad Vegetal/genética , Secuenciación Completa del Genoma
18.
Genome Biol Evol ; 10(3): 901-908, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29608726

RESUMEN

Reduced visibility of women in science is thought to be one of the causes of their underrepresentation among scientists, in particular at senior positions. Visibility is achieved through publications, and through conference attendance and presentations. Here, we investigated gender differences in visibility at the annual meetings of the Society of Molecular Biology and Evolution. The analysis of meeting programs showed a regular increase in female speakers for the last 16 years. Data on abstract submission suggest that there are no gender-related preferences in the acceptance of contributed presentations at the most recent meetings. However, data collected on-site in 2015 and 2016 show that women asked only ∼25% of the questions, that is, much less than expected given the female attendance. Understanding the reasons for this pattern is necessary for the development of policies that aim to reduce imbalance in visibility.


Asunto(s)
Biología Molecular/tendencias , Ciencia , Mujeres Trabajadoras , Femenino , Humanos , Recursos Humanos
19.
PLoS Comput Biol ; 2(6): e56, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16789822

RESUMEN

Differential movement of individual cells within tissues is an important yet poorly understood process in biological development. Here we present a computational study of cell sorting caused by a combination of cell adhesion and chemotaxis, where we assume that all cells respond equally to the chemotactic signal. To capture in our model mesoscopic properties of biological cells, such as their size and deformability, we use the Cellular Potts Model, a multiscale, cell-based Monte Carlo model. We demonstrate a rich array of cell-sorting phenomena, which depend on a combination of mescoscopic cell properties and tissue level constraints. Under the conditions studied, cell sorting is a fast process, which scales linearly with tissue size. We demonstrate the occurrence of "absolute negative mobility", which means that cells may move in the direction opposite to the applied force (here chemotaxis). Moreover, during the sorting, cells may even reverse the direction of motion. Another interesting phenomenon is "minority sorting", where the direction of movement does not depend on cell type, but on the frequency of the cell type in the tissue. A special case is the cAMP-wave-driven chemotaxis of Dictyostelium cells, which generates pressure waves that guide the sorting. The mechanisms we describe can easily be overlooked in studies of differential cell movement, hence certain experimental observations may be misinterpreted.


Asunto(s)
Quimiotaxis , Biología Computacional/métodos , Animales , Anisotropía , Adhesión Celular , Movimiento Celular , AMP Cíclico/metabolismo , Dictyostelium , Modelos Biológicos , Método de Montecarlo
20.
Genome Biol Evol ; 8(8): 2530-43, 2016 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-27492231

RESUMEN

We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20-35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available.


Asunto(s)
Modelos Genéticos , Cromosomas Sexuales/genética , Programas Informáticos , Animales , Femenino , Masculino , Probabilidad , Procesos de Determinación del Sexo , Silene/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA