Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(9): 1129-1137, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31358998

RESUMEN

Natural killer (NK) cells can recognize virus-infected and stressed cells1 using activating and inhibitory receptors, many of which interact with HLA class I. Although early studies also suggested a functional impact of HLA class II on NK cell activity2,3, the NK cell receptors that specifically recognize HLA class II molecules have never been identified. We investigated whether two major families of NK cell receptors, killer-cell immunoglobulin-like receptors (KIRs) and natural cytotoxicity receptors (NCRs), contained receptors that bound to HLA class II, and identified a direct interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including HLA-DP401, one of the most frequent class II allotypes in white populations4. Using NKp44ζ+ reporter cells and primary human NKp44+ NK cells, we demonstrated that interactions between NKp44 and HLA-DP401 trigger functional NK cell responses. This interaction between a subset of HLA-DP molecules and NKp44 implicates HLA class II as a component of the innate immune response, much like HLA class I. It also provides a potential mechanism for the described associations between HLA-DP subtypes and several disease outcomes, including hepatitis B virus infection5-7, graft-versus-host disease8 and inflammatory bowel disease9,10.


Asunto(s)
Antígenos HLA-DP/inmunología , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Línea Celular , Enfermedad Injerto contra Huésped/inmunología , Hepatitis B/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Células Jurkat
2.
Gut ; 73(2): 325-337, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37788895

RESUMEN

OBJECTIVE: Primary sclerosing cholangitis (PSC) is characterised by bile duct strictures and progressive liver disease, eventually requiring liver transplantation. Although the pathogenesis of PSC remains incompletely understood, strong associations with HLA-class II haplotypes have been described. As specific HLA-DP molecules can bind the activating NK-cell receptor NKp44, we investigated the role of HLA-DP/NKp44-interactions in PSC. DESIGN: Liver tissue, intrahepatic and peripheral blood lymphocytes of individuals with PSC and control individuals were characterised using flow cytometry, immunohistochemical and immunofluorescence analyses. HLA-DPA1 and HLA-DPB1 imputation and association analyses were performed in 3408 individuals with PSC and 34 213 controls. NK cell activation on NKp44/HLA-DP interactions was assessed in vitro using plate-bound HLA-DP molecules and HLA-DPB wildtype versus knock-out human cholangiocyte organoids. RESULTS: NKp44+NK cells were enriched in livers, and intrahepatic bile ducts of individuals with PSC showed higher expression of HLA-DP. HLA-DP haplotype analysis revealed a highly elevated PSC risk for HLA-DPA1*02:01~B1*01:01 (OR 1.99, p=6.7×10-50). Primary NKp44+NK cells exhibited significantly higher degranulation in response to plate-bound HLA-DPA1*02:01-DPB1*01:01 compared with control HLA-DP molecules, which were inhibited by anti-NKp44-blocking. Human cholangiocyte organoids expressing HLA-DPA1*02:01-DPB1*01:01 after IFN-γ-exposure demonstrated significantly increased binding to NKp44-Fc constructs compared with unstimulated controls. Importantly, HLA-DPA1*02:01-DPB1*01:01-expressing organoids increased degranulation of NKp44+NK cells compared with HLA-DPB1-KO organoids. CONCLUSION: Our studies identify a novel PSC risk haplotype HLA-DP A1*02:01~DPB1*01:01 and provide clinical and functional data implicating NKp44+NK cells that recognise HLA-DPA1*02:01-DPB1*01:01 expressed on cholangiocytes in PSC pathogenesis.


Asunto(s)
Colangitis Esclerosante , Humanos , Haplotipos , Colangitis Esclerosante/genética , Cadenas alfa de HLA-DP/genética , Células Asesinas Naturales
3.
PLoS Pathog ; 18(6): e1010572, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749424

RESUMEN

Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Antivirales/metabolismo , Regulación hacia Abajo , Humanos , Células Asesinas Naturales , Ligandos , Receptores de Células Asesinas Naturales/metabolismo , Receptores Virales , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
4.
EMBO Rep ; 23(8): e54133, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35758160

RESUMEN

NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus-infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV-1-infected cells. By combining an unbiased large-scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV-1-infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor-mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL-mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL-mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti-HIV-1 activity of NK cells but also possesses a multifunctional role beyond receptor-mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.


Asunto(s)
Citotoxicidad Inmunológica , VIH-1 , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Humanos , Interferón gamma/metabolismo , Células Asesinas Naturales , Activación de Linfocitos
5.
Ecol Lett ; 26(8): 1277-1292, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37314027

RESUMEN

What is addressed as growing season in terrestrial ecosystems is one of the main determinants of annual plant biomass production globally. However, there is no well-defined concept behind. Here, we show different facets of what might be termed growing season, each with a distinct meaning: (1) the time period during which a plant or a part of it actually grows and produces new tissue, irrespective of net carbon gain (growing season sensu stricto). (2) The period defined by developmental, that is, phenological markers (phenological season). (3) The period during which vegetation as a whole achieves its annual net primary production (NPP) or a net ecosystem production (NEP), expressed as net carbon gain (productive season) and (4) the period during which plants could potentially grow based on meteorological criteria (meteorological season). We hypothesize that the duration of such a 'window of opportunity' is a strong predictor for NPP at a global scale, especially for forests. These different definitions have implications for the understanding and modelling of plant growth and biomass production. The common view that variation in phenology is a proxy for variation in productivity is misleading, often resulting in unfounded statements on potential consequences of climatic warming such as carbon sequestration.


Asunto(s)
Ecosistema , Bosques , Estaciones del Año , Desarrollo de la Planta , Plantas , Carbono , Cambio Climático
6.
Kidney Int ; 99(5): 1140-1148, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33359499

RESUMEN

BK polyomavirus-associated nephropathy is a common complication after kidney transplantation leading to reduced graft function or loss. The molecular pathogenesis of BK polyomavirus-induced nephropathy is not well understood. A recent study had described a protective effect of the activating natural killer cell receptor KIR3DS1 in BK polyomavirus-associated nephropathy, suggesting a role of NK cells in modulating disease progression. Using an in vitro cell culture model of human BK polyomavirus infection and kidney biopsy samples from patients with BK polyomavirus-associated nephropathy, we observed significantly increased surface expression of the ligand for KIR3DS1, HLA-F, on BK polyomavirus-infected kidney tubular cells. Upregulation of HLA-F expression resulted in significantly increased binding of KIR3DS1 to BK polyomavirus-infected cells and activation of primary KIR3DS-positive natural killer cells. Thus, our data provide a mechanism by which KIR3DS-positive natural killer cells can control BK polyomavirus infection of the kidney, and rationale for exploring HLA-F/KIR3DS1 interactions for immunotherapeutic approaches in BK polyomavirus-associated nephropathy.


Asunto(s)
Virus BK , Enfermedades Renales , Infecciones por Polyomavirus , Infecciones Tumorales por Virus , Humanos , Células Asesinas Naturales/metabolismo , Receptores KIR3DS1/genética , Receptores KIR3DS1/metabolismo , Regulación hacia Arriba
7.
New Phytol ; 229(5): 2413-2445, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32789857

RESUMEN

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Asunto(s)
Secuestro de Carbono , Ecosistema , Atmósfera , Ciclo del Carbono , Dióxido de Carbono , Cambio Climático
8.
Glob Chang Biol ; 27(17): 3951-3952, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089549

RESUMEN

The global treeline phenomenon follows a common seasonal mean temperature (isotherm) of about 6°C. When the isotherm moves upslope because of rapid climatic warming, trees are left behind and are absent from the climatic tree limit. This commentary recalls the discrepancy between the actual uppermost position of trees and the potential (climatic) treeline. Temperature-based models can predict the potential treeline only (comment to Camarero et al., Global Change Biology, 27, 1879-1889, 2021). The photograph shows a treeline situation in SW New Zealand.


Asunto(s)
Árboles , Nueva Zelanda , Temperatura
9.
Oecologia ; 197(4): 1063-1077, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34047842

RESUMEN

The majority of alpine plants are of small stature. Through their small size alpine plants are decoupled from the free atmospheric circulation and accumulate solar heat. However, a few alpine species do not follow that "rule" and protrude with their aboveground structures from the microclimatic shelter of the main canopy boundary layer. We aim at explaining the phenomenon of being tall by exploring the biomass production and carbon relations of four pairs of small and tall phylogenetically related taxa in alpine grassland. We compared species and stature-specific biomass allocation, shifts in non-structural carbohydrate (NSC) concentrations in different tissues throughout the season, and we used 13C labels to track carbon transfer from leaves to belowground structures. Small and tall herbs did not differ in their above- to belowground biomass allocation. The NSC composition (starch, fructan, simple sugars) and allocation did not show a stature-specific pattern, except for higher concentrations of simple sugars in tall species during their extended shoot growth. In relative terms, tall species had higher NSC pools in rhizomes, whereas small species had higher NSC pools in roots. Our findings do not place tall alpine forbs in an exceptional category in terms of biomass allocation and carbohydrate storage. The tall versus small stature of the examined herbs does not seem to be associated with specific adjustments in carbon relations. 13C pulse labelling revealed early C autonomy in young, unfolding leaves of the tall species, which are thus independent of the carbon reserves in the massive belowground organs.


Asunto(s)
Carbono , Pradera , Biomasa , Carbohidratos , Estaciones del Año
10.
Mol Ecol ; 29(13): 2321-2333, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31923325

RESUMEN

The mutualistic symbiosis between forest trees and ectomycorrhizal fungi (EMF) is among the most ubiquitous and successful interactions in terrestrial ecosystems. Specific species of EMF are known to colonize specific tree species, benefitting from their carbon source, and in turn, improving their access to soil water and nutrients. EMF also form extensive mycelial networks that can link multiple root-tips of different trees. Yet the number of tree species connected by such mycelial networks, and the traffic of material across them, are just now under study. Recently we reported substantial belowground carbon transfer between Picea, Pinus, Larix and Fagus trees in a mature forest. Here, we analyze the EMF community of these same individual trees and identify the most likely taxa responsible for the observed carbon transfer. Among the nearly 1,200 EMF root-tips examined, 50%-70% belong to operational taxonomic units (OTUs) that were associated with three or four tree host species, and 90% of all OTUs were associated with at least two tree species. Sporocarp 13 C signals indicated that carbon originating from labelled Picea trees was transferred among trees through EMF networks. Interestingly, phylogenetically more closely related tree species exhibited more similar EMF communities and exchanged more carbon. Our results show that belowground carbon transfer is well orchestrated by the evolution of EMFs and tree symbiosis.


Asunto(s)
Carbono , Micorrizas , Raíces de Plantas/microbiología , Árboles/microbiología , Ecosistema , Micorrizas/genética , Árboles/clasificación
11.
Glob Chang Biol ; 26(3): 1857-1872, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31799736

RESUMEN

In temperate alpine environments, the short growing season, low temperature and a slow nutrient cycle may restrict plant growth more than carbon (C) assimilation does. To test whether C is a limiting resource, we applied a shade gradient from ambient light to 44% (maximum shade) of incident photon flux density (PFD) in late successional, Carex curvula-dominated alpine grassland at 2,580 m elevation in the Swiss central Alps for 3 years (2014-2016). Total aboveground biomass did not significantly decrease under reduced PFD, with a confidence interval ranging from +4% to -15% biomass in maximum shade. Belowground biomass, of which more than 80% were fine roots, was significantly reduced by a mean of 17.9 ± 4.6% (±SE), corresponding to 228 g/m2 , in maximum shade in 2015 and 2016. This suggests reduced investments into water and nutrient acquisition according to the functional equilibrium concept. Specific leaf area (SLA) and maximum leaf length of the most abundant species increased with decreasing PFD. Foliar concentration of nonstructural carbohydrates (NSC) was reduced by 12.5 ± 4.3% under maximum shade (mean of eight tested species), while NSC concentration of belowground storage organs were unchanged in the four most abundant forbs. Furthermore, maximum shade lowered foliar δ13 C by 1.56 ± 0.35‰ and increased foliar nitrogen concentrations per unit dry mass by 18.8 ± 4.1% across six species in 2015. However, based on unit leaf area, N concentrations were lower in shade (effect of higher SLA). Thus, while we found typical morphological and physiological plant responses to lower light, shading did not considerably affect seasonal aboveground biomass production of this alpine plant community within a broad range of PFD. This suggests that C is not a growth-limiting resource, matching the unresponsiveness to in situ CO2 enrichment previously reported for this type of grassland.


Asunto(s)
Carbono , Luz Solar , Biomasa , Pradera , Fenómenos Fisiológicos de las Plantas
12.
Orthopade ; 49(6): 494-501, 2020 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-32436038

RESUMEN

BACKGROUND: The corona pandemic poses enormous financial challenges for hospitals. Using the example of a clinic for orthopaedics and trauma surgery, the performance development of the first 5 weeks in comparison to last year and an evaluation of the compensation measures laid down by law will be evaluated. METHODOLOGY: Based on the performance figures, a comparison is made between the period 16.03 to 17.04.2019 and the same period in 2020. Changes in the number of cases, case mix, case-mix index and day-mix index, as well as the occupancy days are recorded. The monetary measures from the COVID-19 Hospital Relief Act are applied to these changes, and the adequacy is evaluated. RESULTS: Compared to last year, there was a decrease in inpatient admissions of n = 307 patients in the observation period. As a result, there was a decrease of 595 points in case mix and 2320 days of occupancy. This results in a decrease in revenue of approximately EUR 1.9 million. The flat rate for empty beds represents the largest monetary compensation for the loss of revenue. It amounts to approximately EUR 1.3 million. Taking into account further support and an adjustment for variable costs, a deficit of EUR 382,069 remains for 5 weeks. DISCUSSION: The measures taken by the Government are an important pillar for the economic security of German hospitals. The lack of differentiation of measures by specialty leads to insufficient compensation for orthopaedics and trauma surgery.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Procedimientos Ortopédicos , Ortopedia , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/epidemiología , Grupos Diagnósticos Relacionados , Alemania/epidemiología , Humanos , Procedimientos Ortopédicos/estadística & datos numéricos , Ortopedia/tendencias , Neumonía Viral/epidemiología , SARS-CoV-2 , Centros Traumatológicos
13.
Gastroenterology ; 155(5): 1366-1371.e3, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30031767

RESUMEN

Killer-cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer (NK) cells. Binding of KIR3DS1 to its recently discovered ligand, HLA-F, activates NK cells and has been associated with resolution of hepatitis C virus (HCV) infection. We investigated the mechanisms by which KIR3DS1 contributes to the antiviral immune response. Using cell culture systems, mice with humanized livers, and primary liver tissue from HCV-infected individuals, we found that the KIR3DS1 ligand HLA-F is up-regulated on HCV-infected cells, and that interactions between KIR3DS1 and HLA-F contribute to NK cell-mediated control of HCV. Strategies to promote interaction between KIR3DS1 and HLA-F might be developed for treatment of infectious diseases and cancer.


Asunto(s)
Hepacivirus/fisiología , Antígenos de Histocompatibilidad Clase I/fisiología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Receptores KIR3DS1/fisiología , Replicación Viral , Células Cultivadas , Hepatitis C/tratamiento farmacológico , Humanos
14.
Mol Ecol ; 28(2): 318-335, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418699

RESUMEN

Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify. To clarify the regional variation in the visitor community of a widespread flower resource, we compared the composition of the arthropod community visiting species in the genus Dryas (mountain avens, family Rosaceae), throughout Arctic and high-alpine areas. At each of 15 sites, we sampled Dryas visitors with 100 sticky flower mimics and identified specimens to Barcode Index Numbers (BINs) using a partial sequence of the mitochondrial COI gene. As a measure of ecosystem functioning, we quantified variation in the seed set of Dryas. To test for an association between phylogenetic and functional diversity, we characterized the structure of local visitor communities with both taxonomic and phylogenetic descriptors. In total, we detected 1,360 different BINs, dominated by Diptera and Hymenoptera. The richness of visitors at each site appeared to be driven by local temperature and precipitation. Phylogeographic structure seemed reflective of geological history and mirrored trans-Arctic patterns detected in plants. Seed set success varied widely among sites, with little variation attributable to pollinator species richness. This pattern suggests idiosyncratic associations, with function dominated by few and potentially different taxa at each site. Taken together, our findings illustrate the role of post-glacial history in the assembly of flower-visitor communities in the Arctic and offer insights for understanding how diversity translates into ecosystem functioning.


Asunto(s)
Artrópodos/fisiología , Ecosistema , Polinización/fisiología , Rosaceae/envenenamiento , Animales , Regiones Árticas , Artrópodos/genética , Código de Barras del ADN Taxonómico , Flores/genética , Flores/crecimiento & desarrollo , Modelos Biológicos , Filogenia , Reproducción , Rosaceae/crecimiento & desarrollo , Rosaceae/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo
15.
Mol Cell Proteomics ; 15(4): 1435-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26785728

RESUMEN

PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors andin vitrodifferentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCsin vitro Knock-down ofPMM2by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.


Asunto(s)
Trastornos Congénitos de Glicosilación/patología , Glicómica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Fosfotransferasas (Fosfomutasas)/deficiencia , Células Cultivadas , Trastornos Congénitos de Glicosilación/metabolismo , Perfilación de la Expresión Génica/métodos , Glicosilación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Células Madre Pluripotentes Inducidas/patología , Fosfotransferasas (Fosfomutasas)/metabolismo , Polisacáridos/metabolismo
16.
J Infect Dis ; 216(2): 254-262, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28838149

RESUMEN

Background: Systemic chemotherapies for various malignancies have been shown to significantly, yet transiently, decrease numbers of CD4+ T lymphocytes, a major reservoir for human immunodeficiency virus type 1 (HIV-1) infection. However, little is known about the impact of cytoreductive chemotherapy on HIV-1 reservoir dynamics, persistence, and immune responses. Methods: We investigated the changes in peripheral CD4+ T-cell-associated HIV-1 DNA and RNA levels, lymphocyte activation, viral population structure, and virus-specific immune responses in a longitudinal cohort of 15 HIV-1-infected individuals receiving systemic chemotherapy or subsequent autologous stem cell transplantation for treatment of hematological malignancies and solid tumors. Results: Despite a transient reduction in CD4+ T cells capable of harboring HIV-1, a 1.7- and 3.3-fold increase in mean CD4+ T-cell-associated HIV-1 RNA and DNA, respectively, were observed months following completion of chemotherapy in individuals on antiretroviral therapy. We also observed changes in CD4+ T-cell population diversity and clonal viral sequence expansion during CD4+ T-cell reconstitution following chemotherapy cessation. Finally, HIV-1 DNA was preferentially, and in some cases exclusively, detected in cytomegalovirus (CMV)- and Epstein-Barr virus (EBV)-responsive CD4+ T cells following chemotherapy. Conclusions: Expansion of HIV-infected CMV/EBV-specific CD4 + T cells may contribute to maintenance of the HIV DNA reservoir following chemotherapy.


Asunto(s)
Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/tratamiento farmacológico , Neoplasias/complicaciones , Citomegalovirus , Infecciones por Citomegalovirus , ADN Viral/análisis , Quimioterapia , Femenino , VIH-1 , Herpesvirus Humano 4 , Humanos , Activación de Linfocitos , Masculino , Neoplasias/terapia , Neoplasias/virología , Estudios Prospectivos , ARN Viral/análisis , Trasplante de Células Madre , Carga Viral , Replicación Viral
17.
J Am Chem Soc ; 139(39): 13636-13639, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28914535

RESUMEN

Three furan fused boron dipyrromethenes (BODIPYs) with a CF3 group on the meso-carbon are synthesized as near-infrared absorbing materials for vacuum processable organic solar cells. The best single junction device reaches a short-circuit current (jsc) of 13.3 mA cm-2 and a power conversion efficiency (PCE) of 6.1%. These values are highly promising for an electron donor material with an absorption onset beyond 900 nm. In a tandem solar cell comprising a NIR BODIPY subcell and a matching "green" absorber subcell, complementary absorption is achieved, resulting in PCE of ∼10%.

18.
BMC Infect Dis ; 17(1): 550, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28789630

RESUMEN

BACKGROUND: Improved treatment options of HIV have resulted in regular physical activities of many HIV-infected patients. However, data on effects of sports in HIV-patients are scarce. METHODS: 21 HIV-infected persons were monitored prospectively while preparing for a marathon run. Multiple parameters with regard to immunology, quality of life and metabolism were measured at 4 time points (at baseline 1 year before the marathon run, 3 and 6 months after beginning of training, and immediately before marathon). RESULTS: 13 out of 21 participants completed the marathon (12 male, 1 female; median age 42 years [27-50]; CD4 = 620/µl [146-1268]; 11 were on ART since 3.5 years [1-7]). 8 participants ceased training early. All reasons for stopping (besides one pre-existing metatarsal fracture) were not regarded as training-related (e.g. time limitation n = 3; newly diagnosed anal cancer n = 1; personal reasons/unknown n = 3). We observed a significant increase in absolute CD4-T-cells (620/µl [146-1268] vs. 745 [207-1647]; p = 0.001) with simultaneous decrease of CD4-T-cell apoptosis (53% [47-64] vs. 32% [14-42]); p < 0.01). No effects on viral load independent of ART occurred. Systolic blood pressure and cholesterol improved significantly, although moderate and normal at baseline (cholesterol 185 mg/dl [98-250] vs. 167 [106-222], p = 0.02; RRsys 125 mmHg [100-145] vs. 120 [100-140], p = 0.01). Blood count, liver enzymes, creatinine and CK remained unchanged. CONCLUSIONS: The results of this pilot study indicated improved metabolic and immunologic parameters in HIV-infected patients undergoing moderate endurance training. Although training effects or ART cannot be ultimately separated as underlying mechanisms, we conclude that marathon training is safe for HIV-infected patients and potentially improves general health. TRIAL REGISTRATION: DRKS00011592 (retrospectively registered on February 9th 2017).


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Resistencia Física/fisiología , Esfuerzo Físico/fisiología , Adulto , Presión Sanguínea , Recuento de Linfocito CD4 , Colesterol/sangre , Femenino , Infecciones por VIH/virología , Humanos , Hígado/enzimología , Masculino , Persona de Mediana Edad , Resistencia Física/inmunología , Esfuerzo Físico/inmunología , Proyectos Piloto , Calidad de Vida , Carrera , Carga Viral
19.
Traffic ; 15(1): 12-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24102787

RESUMEN

Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non-uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterized at the molecular level. We have developed a cell-free assay that reconstitutes vesicle targeting utilizing the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans-Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterizing some novel cases of congenital glycosylation disorders.


Asunto(s)
Sistema Libre de Células/metabolismo , Aparato de Golgi/metabolismo , Microscopía Fluorescente/métodos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Galactosiltransferasas/metabolismo , Células HEK293 , Humanos , Multimerización de Proteína , Transporte de Proteínas , Vesículas Secretoras/metabolismo
20.
J Hepatol ; 65(2): 252-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27057987

RESUMEN

BACKGROUND & AIMS: Both natural killer (NK) cells and human leukocyte antigen (HLA)/killer cell immunoglobulin like receptor (KIR) interactions have been shown to play an important role in the control, clearance and progression of hepatitis C virus (HCV) disease. Here we aimed at elucidating the effects of viral peptides derived from HCV on HLA stabilization, changes in KIR binding and primary NK cell function. METHODS: Transporter for antigen presentation-deficient 722.221 cells stably transfected with HLA-C∗03:04 were used to screen 200 overlapping peptides, covering the non-structural protein 3 (NS3) and core protein of HCV genotype 1, for their ability to bind and stabilize HLA-C∗03:04. Binding of KIR2DL3 to the HLA-peptide complex was assessed using a KIR2DL3-IgG fusion construct. Primary NK cells were isolated from healthy donors to investigate the effects of identified peptides on KIR2DL3(+) NK cell function. RESULTS: Thirty-one peptides able to stabilize HLA-C∗03:04 were identified. One 9mer peptide, YIPLVGAPL, resulted in significantly higher KIR2DL3 binding to HLA-C∗03:04(+) 722.221 cells and suppression of primary KIR2DL3(+) NK cell function. Interestingly this sequence exhibited a high frequency of mutations in different HCV genotypes. These genotype-specific peptides showed lower HLA-C∗03:04 stabilization, decreased binding of the inhibitory KIR2DL3 and lower inhibition of NK cell function. CONCLUSIONS: Taken together we show that a viral peptide derived from the core protein of HCV genotype 1 binding to HLA-C∗03:04 results in a sequence-dependent engagement of the inhibitory NK cell receptor KIR2DL3, while the large majority of the remaining 30 HLA-C∗03:04 binding HCV core peptides did not. These data show that sequence variations within HCV can modulate NK cell function, providing potential pathways for viral escape. LAY SUMMARY: We identified a HCV peptide that dampens NK cell responses, and thereby possibly prevents killing of infected cells through this part of the innate immune system. This is facilitated via presentation of the viral peptide on HLA∗03:04 to the inhibitory KIR receptor KIR2DL3 on NK cells. Naturally occurring sequence mutations in the peptide alter these interactions making the inhibition less efficient.


Asunto(s)
Células Asesinas Naturales , Epítopos , Antígenos HLA-C , Hepatitis C , Humanos , Receptores KIR2DL3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA