Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(8): e3001729, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35972940

RESUMEN

Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecosistema , Actividades Humanas , Humanos
2.
Nature ; 556(7700): 231-234, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618821

RESUMEN

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.


Asunto(s)
Altitud , Biodiversidad , Mapeo Geográfico , Calentamiento Global/estadística & datos numéricos , Plantas/clasificación , Europa (Continente) , Historia del Siglo XX , Historia del Siglo XXI , Temperatura
3.
New Phytol ; 232(4): 1849-1862, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455590

RESUMEN

The functioning of present ecosystems reflects deep evolutionary history of locally cooccurring species if their functional traits show high phylogenetic signal (PS). However, we do not understand what drives local PS. We hypothesize that local PS is high in undisturbed and stressful habitats, either due to ongoing local assembly of species that maintained ancestral traits, or to past evolutionary maintenance of ancestral traits within habitat species-pools, or to both. We quantified PS and diversity of 10 traits within 6704 local plant communities across 38 Dutch habitat types differing in disturbance or stress. Mean local PS varied 50-fold among habitat types, often independently of phylogenetic or trait diversity. Mean local PS decreased with disturbance but showed no consistent relationship to stress. Mean local PS exceeded species-pool PS, reflecting nonrandom subsampling from the pool. Disturbance or stress related more strongly to mean local than to species-pool PS. Disturbed habitats harbour species with evolutionary divergent trait values, probably driven by ongoing, local assembly of species: environmental fluctuations might maintain different trait values within lineages through an evolutionary storage effect. If functional traits do not reflect phylogeny, ecosystem functioning might not be contingent on the presence of particular lineages, and lineages might establish evolutionarily novel interactions.


Asunto(s)
Evolución Biológica , Ecosistema , Biodiversidad , Fenotipo , Filogenia , Plantas/genética
4.
Proc Natl Acad Sci U S A ; 115(10): E2264-E2273, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29432147

RESUMEN

Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history. Emerging alien species-those never encountered as aliens before-therefore pose a significant challenge to biosecurity interventions worldwide. Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools. Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide. Even after many centuries of invasions the rate of emergence of new alien species is still high: One-quarter of first records during 2000-2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa. Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions. Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change. This process compensates for the depletion of the historically important source species pool through successive invasions. We estimate that 1-16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species. These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict.


Asunto(s)
Especies Introducidas/estadística & datos numéricos , Animales , Biodiversidad , Ecosistema , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Especies Introducidas/historia , Modelos Biológicos , Dinámica Poblacional/historia
5.
Glob Chang Biol ; 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000893

RESUMEN

Biological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business-as-usual scenario). We first validated performance of different model versions by conducting a back-casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon-continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.

6.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32663906

RESUMEN

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Asunto(s)
Biodiversidad , Especies Introducidas , Cambio Climático , Ecosistema , Predicción , Humanos
7.
Glob Ecol Biogeogr ; 29(6): 978-991, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34938151

RESUMEN

BACKGROUND AND AIMS: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE: The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.

8.
Ecology ; 98(1): 92-102, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27935020

RESUMEN

It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.


Asunto(s)
Especies Introducidas , Micorrizas/fisiología , Plantas/microbiología , Simbiosis , Ecología , Alemania
9.
PLoS Biol ; 12(5): e1001850, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24802715

RESUMEN

Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.


Asunto(s)
Distribución Animal/fisiología , Ambiente , Especies Introducidas/estadística & datos numéricos , Dispersión de las Plantas/fisiología , Animales , Biodiversidad , Extinción Biológica , Cadena Alimentaria , Herbivoria/fisiología , Actividades Humanas/tendencias , Humanos , Plantas/microbiología , Plantas/parasitología , Plantas/virología , Dinámica Poblacional/tendencias , Conducta Predatoria/fisiología , Suelo/química , Especificidad de la Especie , Incertidumbre
10.
J Anim Ecol ; 86(4): 800-811, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28493450

RESUMEN

Interactions between resource and consumer species result in complex ecological networks. The overall structure of these networks is often stable in space and time, but little is known about the temporal stability of the functional roles of consumer species in these networks. We used a trait-based approach to investigate whether consumers (frugivorous birds) show similar degrees of functional specialisation on resources (plants) in ecological networks across seasons. We additionally tested whether closely related bird species have similar degrees of functional specialisation and whether birds that are functionally specialised on specific resource types within a season are flexible in switching to other resource types in other seasons. We analysed four seasonal replicates of two species-rich plant-frugivore networks from the tropical Andes. To quantify fruit preferences of frugivorous birds, we projected their interactions with plants into a multidimensional plant trait space. To measure functional specialisation of birds, we calculated a species' functional niche breadth (the extent of seasonal plant trait space utilised by a particular bird) and functional originality (the extent to which a bird species' fruit preference functionally differs from those of other species in a seasonal network). We additionally calculated functional flexibility, i.e. the ability of bird species to change their fruit preference across seasons in response to variation in plant resources. Functional specialisation of bird species varied more among species than across seasons, and phylogenetically similar bird species showed similar degrees of functional niche breadth (phylogenetic signal λ = 0·81) and functional originality (λ = 0·89). Additionally, we found that birds with high functional flexibility across seasons had narrow functional niche breadth and high functional originality per season, suggesting that birds that are seasonally specialised on particular resources are most flexible in switching to other fruit resources across seasons. The high flexibility of functionally specialised bird species to switch seasonally to other resources challenges the view that consumer species rely on functionally similar resources throughout the year. This flexibility of consumer species may be an important, but widely neglected mechanism that could potentially stabilise consumer-resource networks in response to human disturbance and environmental change.


Asunto(s)
Aves , Conducta Alimentaria , Frutas , Animales , Ecosistema , Filogenia , Estaciones del Año
11.
Am Nat ; 188(4): 398-410, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27622874

RESUMEN

Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecosistema , Nitrógeno , Filogenia
12.
Proc Natl Acad Sci U S A ; 110(18): 7342-7, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589873

RESUMEN

Rapid economic development in the past century has translated into severe pressures on species survival as a result of increasing land-use change, environmental pollution, and the spread of invasive alien species. However, though the impact of these pressures on biodiversity is substantial, it could be seriously underestimated if population declines of plants and animals lag behind contemporary environmental degradation. Here, we test for such a delay in impact by relating numbers of threatened species appearing on national red lists to historical and contemporary levels of socioeconomic pressures. Across 22 European countries, the proportions of vascular plants, bryophytes, mammals, reptiles, dragonflies, and grasshoppers facing medium-to-high extinction risks are more closely matched to indicators of socioeconomic pressures (i.e., human population density, per capita gross domestic product, and a measure of land use intensity) from the early or mid-, rather than the late, 20th century. We conclude that, irrespective of recent conservation actions, large-scale risks to biodiversity lag considerably behind contemporary levels of socioeconomic pressures. The negative impact of human activities on current biodiversity will not become fully realized until several decades into the future. Mitigating extinction risks might be an even greater challenge if temporal delays mean many threatened species might already be destined toward extinction.


Asunto(s)
Extinción Biológica , Animales , Especies en Peligro de Extinción , Europa (Continente) , Humanos , Modelos Biológicos , Análisis Multivariante , Factores Socioeconómicos , Especificidad de la Especie
13.
Ecology ; 96(3): 762-74, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26236872

RESUMEN

The factors that promote invasive behavior in introduced plant species occur across many scales of biological and ecological organization. Factors that act at relatively small scales, for example, the evolution of biological traits associated with invasiveness, scale up to shape species distributions among different climates and habitats, as well as other characteristics linked to invasion, such as attractiveness for cultivation (and by extension propagule pressure). To identify drivers of invasion it is therefore necessary to disentangle the contribution of multiple factors that are interdependent. To this end, we formulated a conceptual model describing the process of invasion of central European species into North America based on a sequence of "drivers." We then used confirmatory path analysis to test whether the conceptual model is supported by a statistical model inferred from a comprehensive database containing 466 species. The path analysis revealed that naturalization of central European plants in North America, in terms of the number of North American regions invaded, most strongly depends on residence time in the invaded range and the number of habitats occupied by species in their native range. In addition to the confirmatory path analysis, we identified the effects of various biological traits on several important drivers of the conceptualized invasion process. The data supported a model that included indirect effects of biological traits on invasion via their effect on the number of native range habitats occupied and cultivation in the native range. For example, persistent seed banks and longer flowering periods are positively correlated with number of native habitats, while a stress-tolerant life strategy is negatively correlated with native range cultivation. However, the importance of the biological traits is nearly an order of magnitude less than that of the larger scale drivers and highly dependent on the invasion stage (traits were associated only with native range drivers). This suggests that future research should explicitly link biological traits to the different stages of invasion, and that a failure to consider residence time or characteristics of the native range may seriously overestimate the role of biological traits, which, in turn, may result in spurious predictions of plant invasiveness.


Asunto(s)
Especies Introducidas , Fenómenos Fisiológicos de las Plantas , Ecosistema , Europa (Continente) , Modelos Biológicos , América del Norte , Desarrollo de la Planta , Dispersión de las Plantas , Factores de Tiempo
14.
Proc Biol Sci ; 281(1780): 20133330, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24523278

RESUMEN

Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km(2)) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.


Asunto(s)
Biodiversidad , Aves/clasificación , Plantas/clasificación , Urbanización , Animales , Conservación de los Recursos Naturales , Actividades Humanas , Humanos , Dinámica Poblacional
15.
Conserv Biol ; 28(5): 1188-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24779412

RESUMEN

Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Especies Introducidas , Animales , Biodiversidad , Plantas
17.
Proc Natl Acad Sci U S A ; 108(1): 203-7, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173227

RESUMEN

Globalization and economic growth are widely recognized as important drivers of biological invasions. Consequently, there is an increasing need for governments to address the role of international trade in their strategies to prevent species introductions. However, many of the most problematic alien species are not recent arrivals but were introduced several decades ago. Hence, current patterns of alien-species richness may better reflect historical rather than contemporary human activities, a phenomenon which might be called "invasion debt." Here, we show that across 10 taxonomic groups (vascular plants, bryophytes, fungi, birds, mammals, reptiles, amphibians, fish, terrestrial insects, and aquatic invertebrates) in 28 European countries, current numbers of alien species established in the wild are indeed more closely related to indicators of socioeconomic activity from the year 1900 than to those from 2000, although the majority of species introductions occurred during the second half of the 20th century. The strength of the historical signal varies among taxonomic groups, with those possessing good capabilities for dispersal (birds, insects) more strongly associated with recent socioeconomic drivers. Nevertheless, our results suggest a considerable historical legacy for the majority of the taxa analyzed. The consequences of the current high levels of socioeconomic activity on the extent of biological invasions will thus probably not be completely realized until several decades into the future.


Asunto(s)
Hongos/crecimiento & desarrollo , Actividades Humanas/historia , Especies Introducidas/economía , Especies Introducidas/historia , Especies Introducidas/tendencias , Invertebrados/crecimiento & desarrollo , Desarrollo de la Planta , Vertebrados/crecimiento & desarrollo , Animales , Bases de Datos Factuales , Demografía , Europa (Continente) , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Modelos Estadísticos , Dinámica Poblacional , Análisis de Regresión , Factores Socioeconómicos/historia , Factores de Tiempo
18.
FEMS Microbiol Ecol ; 100(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38271603

RESUMEN

Rhizosphere microbiome assembly is essential for plant health, but the temporal dimension of this process remains unexplored. We used a chronosequence of 150 years of the retreating Hallstätter glacier (Dachstein, Austria) to disentangle this exemplarily for the rhizosphere of three pioneer alpine plants. Time of deglaciation was an important factor shaping the rhizosphere microbiome. Microbiome functions, i.e. nutrient uptake and stress protection, were carried out by ubiquitous and cosmopolitan bacteria. The rhizosphere succession along the chronosequence was characterized by decreasing microbial richness but increasing specificity of the plant-associated bacterial community. Environmental selection is a critical factor in shaping the ecosystem, particularly in terms of plant-driven recruitment from the available edaphic pool. A higher rhizosphere microbial richness during early succession compared to late succession can be explained by the occurrence of cold-acclimated bacteria recruited from the surrounding soils. These taxa might be sensitive to changing habitat conditions that occurred at the later stages. A stronger influence of the plant host on the rhizosphere microbiome assembly was observed with increased time since deglaciation. Overall, this study indicated that well-adapted, ubiquitous microbes potentially support pioneer plants to colonize new ecosystems, while plant-specific microbes may be associated with the long-term establishment of their hosts.


Asunto(s)
Microbiota , Rizosfera , Cubierta de Hielo/microbiología , Austria , Microbiología del Suelo , Bacterias/genética , Suelo , Plantas
19.
J Biogeogr ; 51(1): 89-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38515765

RESUMEN

The Anthropocene is characterized by a rapid pace of environmental change and is causing a multitude of biotic responses, including those that affect the spatial distribution of species. Lagged responses are frequent and species distributions and assemblages are consequently pushed into a disequilibrium state. How the characteristics of environmental change-for example, gradual 'press' disturbances such as rising temperatures due to climate change versus infrequent 'pulse' disturbances such as extreme events-affect the magnitude of responses and the relaxation times of biota has been insufficiently explored. It is also not well understood how widely used approaches to assess or project the responses of species to changing environmental conditions can deal with time lags. It, therefore, remains unclear to what extent time lags in species distributions are accounted for in biodiversity assessments, scenarios and models; this has ramifications for policymaking and conservation science alike. This perspective piece reflects on lagged species responses to environmental change and discusses the potential consequences for species distribution models (SDMs), the tools of choice in biodiversity modelling. We suggest ways to better account for time lags in calibrating these models and to reduce their leverage effects in projections for improved biodiversity science and policy.

20.
Ecology ; 94(6): 1389-99, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23923502

RESUMEN

Plant traits have been widely used to characterize different aspects of the ecology of plant species. Despite its wide distribution and its proven significance at the level of individuals, communities, and populations, the ability to form mycorrhizal associations has been largely neglected in these studies so far. Analyzing plant traits associated with the occurrence of mycorrhizas in plants can therefore enhance our understanding of plant strategies and distributions. Using a comparative approach, we tested for associations between mycorrhizal status and habitat characteristics, life history traits, and plant distribution patterns in 1752 species of the German flora (a major part of the Central European flora). Data were analyzed using log-linear models or generalized linear models, both accounting for phylogenetic relationships. Obligatorily mycorrhizal (OM) species tended to be positively associated with higher temperature, drier habitats, and higher pH; and negatively associated with moist, acidic, and fertile soils. Competitive species were more frequently OM, and stress tolerators were non-mycorrhizal (NM), while ruderal species did not show any preference. Facultatively mycorrhizal (FM) species showed the widest geographic and ecological amplitude. Indigenous species were more frequently FM and neophytes (recent aliens) more frequently OM than expected. FM species differed markedly from OM and NM species in almost all analyzed traits. Specifically, they showed a wider geographic distribution and ecological niche. Our study of the relationships between mycorrhizal status and other plant traits provides a comprehensive test of existing hypotheses and reveals novel patterns. The clear distinction between FM and OM + NM species in terms of their ecology opens up a new field of research in plant-mycorrhizal ecology.


Asunto(s)
Micorrizas/clasificación , Micorrizas/fisiología , Plantas/microbiología , Europa (Continente) , Plantas/clasificación , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA