Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(3): 3660-3672, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297582

RESUMEN

Laser cooling of a 5 cm long, 1 mm diameter ytterbium doped (6.56×1025 ions/m3) silica rod by 67 K from room temperature was achieved. For the pump source, a 100 W level ytterbium fiber amplifier was constructed along with a 1032 nm fiber Bragg grating seed laser. Experiments were done in vacuum and monitored with the non-contact differential luminescence thermometry method. Direct measurements of the absorption spectrum as a function of temperature were made, to avoid any possible ambiguities from site-selectivity and deviations from McCumber theory at low temperature. This allowed direct computation of the cooling efficiency versus temperature at the pump wavelength, permitting an estimated heat lift of 1.42 W/m as the sample cooled from ambient temperature to an absolute temperature of 229 K.

2.
Magn Reson Chem ; 62(2): 74-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38112483

RESUMEN

In October 2003, 20 years ago, the open-source and open-content database NMRshiftDB was announced. Since then, the database, renamed as nmrshiftdb2 later, has been continuously available and is one of the longer-running projects in the field of open data in chemistry. After 20 years, we evaluate the success of the project and present lessons learnt for similar projects.

3.
Opt Express ; 31(15): 24730-24738, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475292

RESUMEN

In this work, we conduct experimental investigations of transverse mode instabilities (TMI) in a large mode area ultra-low numerical aperture polarization maintaining fiber amplifier. This fiber is few mode in the slow-axis (conventional operation mode), but single mode in the fast-axis. We test the stability of the output beam by changing the input polarization angle and systematically investigate the transverse mode instability threshold in the two principal polarization axes. The lowest TMI threshold at 300 W was found when the input polarization angle was aligned parallel to the slow-axis. Detuning the input polarization angle from the slow-axis led to increased TMI thresholds. For input polarization angle of 90° (parallel to the fast-axis), the output signal was stable up to 475 W and further scaling was limited by the available pump power. However, for fast-axis operation a lower polarization ratio compared to slow-axis operation was observed as well as an unexpected static energy transfer from the fast-axis into the slow-axis above 400 W.

4.
Opt Express ; 31(25): 41301-41312, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087532

RESUMEN

The effect of transverse mode instability (TMI) poses a fundamental obstacle for a further scaling of diffraction-limited, high-power fiber laser systems. In this work we present a theoretical and experimental study on the mitigation of TMI by modal birefringence in a polarization maintaining (PM) fiber. With the help of comprehensive simulations, we show that the thermally-induced refractive index grating responsible for TMI can be modified and washed out when light is coupled with a polarization input angle detuned from the main axes of the fiber. To confirm the theoretical predictions, we have designed and manufactured an Yb-doped large-mode-area PM fiber. Using this fiber, we have systematically investigated the dependence of the TMI threshold on the polarization input angle of the seed laser. We experimentally demonstrate that when the polarization input angle of the seed is aligned at 50° with respect to the slow-axis, the TMI threshold increases by a factor of 2, verifying the theory and the numerical simulations. A high speed polarization mode-resolved analysis of the output beam is presented, which reveals that at the onset of TMI both polarization axes fluctuates simultaneously.

5.
Opt Express ; 31(26): 44486-44500, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178518

RESUMEN

In this work we have developed a high-speed Stokes polarimeter method based on simultaneous 4-channel imaging with a high-speed camera. Thus, current speed limitations of imaging polarimeters for wavelengths around 1 µm can be overcome, allowing a sub-ms polarization-resolved characterization of transverse mode instability (TMI). Additionally, the Stokes parameters of each individual mode are calculated by a simultaneous 4-beam mode reconstruction algorithm during post-processing and can be analyzed with unprecedented temporal resolution. We demonstrate the measurement capabilities of this polarimeter setup by characterizing TMI of a large-mode-area Yb-doped polarization maintaining (PM) fiber amplifier with 30 kHz video frame rate. Upon thorough characterization, we have found for the first time that at the onset of TMI in a PM fiber, the modal polarization states begin to oscillate on circular and elliptical trajectories at the same frequencies as the modal energy transfer occurs. The ability to measure the modal polarization states with sub-ms temporal resolution is key to developing a fundamental understanding and subsequently possible mitigation strategies of TMI in PM-fiber lasers.

6.
Opt Express ; 31(2): 3122-3133, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785310

RESUMEN

We report on the optical refrigeration of ytterbium doped silica glass by >40 K starting at room temperature, which represents more than a two-fold improvement over the previous state-of-the-art. A spectroscopic investigation of the steady-state and time-dependent fluorescence was carried out over the temperature range 80 K to 400 K. The calculated minimum achievable temperature for our Yb3+ doped silica sample is ≈150 K, implying the potential for utilizing ytterbium doped silica for solid-state optical refrigeration below temperatures commonly achieved by standard Peltier devices.

7.
Opt Express ; 31(12): 20530-20544, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381446

RESUMEN

From laser design to optical refrigeration, experimentally measured fluorescence spectra are often utilized to obtain input parameters for predictive models. However, in materials that exhibit site-selectivity, the fluorescence spectra depend on the excitation wavelength employed to take the measurement. This work explores different conclusions that predictive models reach after inputting such varied spectra. Here, temperature-dependent site-selective spectroscopy is carried out on an ultra-pure Yb, Al co-doped silica rod fabricated by the modified chemical vapor deposition technique. The results are discussed in the context of characterizing ytterbium doped silica for optical refrigeration. Measurements made between 80 K and 280 K at several different excitation wavelengths yield unique values and temperature dependencies of the mean fluorescence wavelength. For the excitation wavelengths studied here, the variation in emission lineshapes ultimately lead to calculated minimum achievable temperatures (MAT) ranging between 151 K and 169 K, with theoretical optimal pumping wavelengths between 1030 nm and 1037 nm. Direct evaluation of the temperature dependence of the fluorescence spectra band area associated with radiative transitions out of the thermally populated 2F5/2 sublevel may be a better approach to identifying the MAT of a glass where site-selective behavior precludes unique conclusions.

8.
Opt Lett ; 48(8): 2198-2201, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37058676

RESUMEN

Frequency doubling of a Q-switched Yb-doped rod-type 4 × 4 multicore fiber (MCF) laser system is reported. A second harmonic generation (SHG) efficiency of up to 52% was achieved with type I non-critically phase-matched lithium triborate (LBO), with a total SHG pulse energy of up to 17 mJ obtained at 1 kHz repetition rate. The dense parallel arrangement of amplifying cores into a shared pump cladding enables a significant increase in the energy capacity of active fibers. The frequency-doubled MCF architecture is compatible with high-repetition-rate and high-average-power operation and may provide an efficient alternative to bulk solid-state systems as pump sources for high-energy titanium-doped sapphire lasers.

9.
Phytochem Anal ; 34(1): 48-55, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36191930

RESUMEN

INTRODUCTION: Data Fusion-based Discovery (DAFdiscovery) is a pipeline designed to help users combine mass spectrometry (MS), nuclear magnetic resonance (NMR), and bioactivity data in a notebook-based application to accelerate annotation and discovery of bioactive compounds. It applies Statistical Total Correlation Spectroscopy (STOCSY) and Statistical HeteroSpectroscopy (SHY) calculation in their data using an easy-to-follow Jupyter Notebook. METHOD: Different case studies are presented for benchmarking, and the resultant outputs are shown to aid natural products identification and discovery. The goal is to encourage users to acquire MS and NMR data from their samples (in replicated samples and fractions when available) and to explore their variance to highlight MS features, NMR peaks, and bioactivity that might be correlated to accelerated bioactive compound discovery or for annotation-identification studies. RESULTS: Different applications were demonstrated using data from different research groups, and it was shown that DAFdiscovery reproduced their findings using a more straightforward method. CONCLUSION: DAFdiscovery has proven to be a simple-to-use method for different situations where data from different sources are required to be analyzed together.


Asunto(s)
Productos Biológicos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos
10.
Notf Rett Med ; 26(3): 227-237, 2023.
Artículo en Alemán | MEDLINE | ID: mdl-37101845

RESUMEN

Critically ill patients in need of specialized diagnostic or therapeutic procedures, but are being cared for in a hospital without such equipment, have to be transferred to appropriate centers without discontinuation of current critical care (interhospital critical care transfer). These transfers are resource intensive, challenging, and require high logistical effort, which must be managed by a specialized and highly trained team, predeployment planning and efficient crew-resource management strategies. If planned adequately, interhospital critical care transfers can be performed safely without frequent adverse events. Beside routine interhospital critical care transfers, there are special missions (e.g., for patients in quarantine or supported by extracorporeal organ support) that might require adaption of the team composition or standard equipment. This article describes interhospital critical care transport missions including their different phases and special circumstances.

11.
Opt Lett ; 47(7): 1725-1728, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363718

RESUMEN

High-energy Q-switched master oscillator power amplifier systems based on rod-type 4 × 4 multicore fibers are demonstrated, achieving energy up to 49 mJ in ns-class pulses. A tapered fiber geometry is tested that maintains low mode order in large multimode output cores, improving beam quality in comparison to a similar fiber with no taper. The tapered fiber design can be scaled both in the number of amplifying cores and in the dimensions of the cores themselves, providing a potential route toward joule-class fiber lasers systems.

12.
Opt Lett ; 47(2): 345-348, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030602

RESUMEN

We present a coherently combined femtosecond fiber chirped-pulse-amplification system based on a rod-type, ytterbium-doped, multicore fiber with 4 × 4 cores. A high average power of up to 500 W (after combination and compression) could be achieved at 10 MHz repetition rate with excellent beam quality. Additionally, < 500 fs pulses with up to 600 µJ of pulse energy were also realized with this setup. This architecture is intrinsically power scalable by increasing the number of cores in the fiber.

13.
Opt Lett ; 47(14): 3608-3611, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838742

RESUMEN

A detailed investigation into the wavelength-dependent cooling efficiencies of two ultra-pure large core diameter ytterbium-doped silica fibers is carried out by means of the laser-induced thermal modulation spectroscopy (LITMoS) method. From these measurements, an external quantum efficiency of 0.99 is obtained for both fibers. Optimal cooling is seen for pump wavelengths between 1032 and 1035 nm. The crossover wavelength from heating to cooling is identified to be between 1018 and 1021 nm. The fiber with higher Yb3+ ion density exhibits better cooling, seen by the input power normalized temperature differential.

14.
Magn Reson Chem ; 60(1): 93-103, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106480

RESUMEN

The lack of machine-readable data is a major obstacle in the application of nuclear magnetic resonance (NMR) in artificial intelligence (AI). As a way to overcome this, a procedure for capturing primary NMR spectroscopic instrumental data annotated with rich metadata and publication in a Findable, Accessible, Interoperable and Reusable (FAIR) data repository is described as part of an undergraduate student laboratory experiment in a chemistry department. This couples the techniques of chemical synthesis of a never before made organic ester with illustration of modern data management practices and serves to raise student awareness of how FAIR data might improve research quality and replicability. Searches of the registered metadata are shown, which enable actionable finding and accessing of such data. The potential for re-use of the data in AI applications is discussed.

15.
Magn Reson Chem ; 60(12): 1097-1112, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34847251

RESUMEN

Estimations of accurate and reliable NMR chemical shift values, coupling patterns and constants within a reasonable timeframe remain significantly challenging, and the unavailability of reliable software strategies for the prediction of low-field (e.g., 60 MHz) spectra from those acquired at higher operating frequencies hampers their direct comparison. Hence, this study explored the applications of accessible software options for predicting these parameters in the 1 H NMR profiles of analytes as a function of magnetic field strength; this was performed for individual analytes and also for complex biofluid matrices featured in metabolomics investigations. For this purpose, results from the very first successful experimental acquisition and simulation of the 1 H NMR profiles of intact human salivary supernatant samples on a 60 MHz benchtop spectrometer were evaluated. Using salivary metabolite concentrations determined at 400 MHz, it was demonstrated that simulation of the low-field spectra of five biomolecules with the most prominent 1 H resonances detectable allowed multiple component fits to be applied to experimental spectra. Hence, these salivary 1 H NMR profiles could be successfully predicted throughout the 45-600 MHz operating frequency range. With the exception of propionate resonance multiplets, which revealed more complex coupling patterns at low field and required more astute computational and fitting options, valuable quantitative metabolomics data on salivary acetate, formate, methanol and glycine could be attained from low-field spectrometres. These studies are both timely and pertinent in view of the recent advancement of low-field benchtop NMR facilities for diagnostically significant biomarker tracking in biofluids. Experiments performed with added ammonium chloride to facilitate the release of salivary metabolites from biopolymer binding sites provided evidence that a small but nevertheless significant proportion of propionate, but not lactate, was bound to such sites, an observation of much relevance to biomolecule quantification in salivary metabolomics investigations.


Asunto(s)
Metabolómica , Propionatos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Simulación por Computador , Imagen por Resonancia Magnética , Mezclas Complejas
16.
Magn Reson Chem ; 60(11): 1021-1031, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34787335

RESUMEN

Calculation of solution-state NMR parameters, including chemical shift values and scalar coupling constants, is often a crucial step for unambiguous structure assignment. Data-driven (sometimes called empirical) methods leverage databases of known parameter values to estimate parameters for unknown or novel molecules. This is in contrast to popular ab initio techniques that use detailed quantum computational chemistry calculations to arrive at parameter estimates. Data-driven methods have the potential to be considerably faster than ab inito techniques and have been the subject of renewed interest over the past decade with the rise of high-quality databases of NMR parameters and novel machine learning methods. Here, we review these methods, their strengths and pitfalls, and the databases they are built on.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
17.
Magn Reson Chem ; 60(11): 1052-1060, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34480494

RESUMEN

This paper presents a proof of concept of a method to identify substructures in 2D NMR spectra of mixtures using a bespoke image-based convolutional neural network application. This is done using HSQC and HMBC spectra separately and in combination. The application can reliably detect substructures in pure compounds, using a simple network. Results indicate that it can work for mixtures when trained on pure compounds only. HMBC data and the combination of HMBC and HSQC show better results than HSQC alone in this pilot study.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Proyectos Piloto
18.
Opt Lett ; 46(22): 5707-5710, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780442

RESUMEN

An ytterbium doped silica optical fiber with a core diameter of 900µm has been cooled by 18.4 K below ambient temperature by pumping with 20 W of 1035 nm light in vacuum. In air, cooling by 3.6 K below ambient was observed with the same 20 W pump. The temperatures were measured with a thermal imaging camera and differential luminescence thermometry. The cooling efficiency is calculated to be 1.2±0.1%. The core of the fiber was codoped with Al3+ for an Al to Yb ratio of 6:1, to allow for a larger Yb concentration and enhanced laser cooling.

19.
Magn Reson Chem ; 59(8): 792-803, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33729627

RESUMEN

The nuclear magnetic resonance extracted data (NMReDATA) format has been proposed as a way to store, exchange, and disseminate nuclear magnetic resonance (NMR) data and physical and chemical metadata of chemical compounds. In this paper, we report on analytical workflows that take advantage of the uniform and standardized NMReDATA format. We also give access to a repository of sample data, which can serve for validating software packages that encode or decode files in NMReDATA format.


Asunto(s)
Espectroscopía de Resonancia Magnética/estadística & datos numéricos , Análisis de Datos , Programas Informáticos
20.
Molecules ; 26(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530604

RESUMEN

The role and importance of the identification of natural products are discussed in the perspective of the study of secondary metabolites. The rapid identification of already reported compounds, or structural dereplication, is recognized as a key element in natural product chemistry. The biological taxonomy of metabolite producing organisms, the knowledge of metabolite molecular structures, and the availability of metabolite spectroscopic signatures are considered as the three pillars of structural dereplication. The role and the construction of databases is illustrated by references to the KNApSAcK, UNPD, CSEARCH, and COCONUT databases, and by the importance of calculated taxonomic and spectroscopic data as substitutes for missing or lost original ones. Two NMR-based tools, the PNMRNP database that derives from UNPD, and KnapsackSearch, a database generator that provides taxonomically focused libraries of compounds, are proposed to the community of natural product chemists. The study of the alkaloids from Urceolina peruviana, a plant from the Andes used in traditional medicine for antibacterial and anticancer actions, has given the opportunity to test different approaches to dereplication, favoring the use of publicly available data sources.


Asunto(s)
Alcaloides/química , Amaryllidaceae/química , Productos Biológicos/química , Química Computacional , Bases de Datos Farmacéuticas , Estructura Molecular , Raíces de Plantas/química , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA