Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Plant Mol Biol ; 110(1-2): 199-218, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779188

RESUMEN

KEY MESSAGE: This study focused on enhancing resilience of soybean crops to drought and salinity stresses by overexpression of GmFAD3A gene, which plays an important role in modulating membrane fluidity and ultimately influence plants response to various abiotic stresses. Fatty acid desaturases (FADs) are a class of enzymes that mediate desaturation of fatty acids by introducing double bonds. They play an important role in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of GmFAD3 in drought and salinity stress tolerance in soybean is lacking. We used bean pod mottle virus (BPMV)-based vector for achieving rapid and efficient overexpression as well as silencing of Omega-3 Fatty Acid Desaturase gene from Glycine max (GmFAD3) to assess the functional role of GmFAD3 in abiotic stress responses in soybean. Higher levels of recombinant BPMV-GmFAD3A transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3A in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. The GmFAD3A-overexpressing plants showed higher levels of chlorophyll content, efficient photosystem-II, relative water content, transpiration rate, stomatal conductance, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from the current study revealed that GmFAD3A-overexpressing soybean plants exhibited tolerance to drought and salinity stresses. However, soybean plants silenced for GmFAD3 were vulnerable to drought and salinity stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Comovirus , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Glycine max/fisiología , Estrés Fisiológico/genética
2.
PLoS Pathog ; 14(3): e1006894, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29513740

RESUMEN

The E3 ubiquitin ligase COP1 (Constitutive Photomorphogenesis 1) is a well known component of the light-mediated plant development that acts as a repressor of photomorphogenesis. Here we show that COP1 positively regulates defense against turnip crinkle virus (TCV) and avrRPM1 bacteria by contributing to stability of resistance (R) protein HRT and RPM1, respectively. HRT and RPM1 levels and thereby pathogen resistance is significantly reduced in the cop1 mutant background. Notably, the levels of at least two double-stranded RNA binding (DRB) proteins DRB1 and DRB4 are reduced in the cop1 mutant background suggesting that COP1 affects HRT stability via its effect on the DRB proteins. Indeed, a mutation in either drb1 or drb4 resulted in degradation of HRT. In contrast to COP1, a multi-subunit E3 ligase encoded by anaphase-promoting complex (APC) 10 negatively regulates DRB4 and TCV resistance but had no effect on DRB1 levels. We propose that COP1-mediated positive regulation of HRT is dependent on a balance between COP1 and negative regulators that target DRB1 and DRB4.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Carmovirus/inmunología , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Luz , Morfogénesis , Mutación , Desarrollo de la Planta , Enfermedades de las Plantas/virología , Nicotiana/inmunología , Nicotiana/virología , Ubiquitina-Proteína Ligasas/genética
3.
J Exp Bot ; 70(5): 1627-1638, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30843586

RESUMEN

The Arabidopsis plasma membrane-localized resistance protein RPM1 is degraded upon the induction of the hypersensitive response (HR) triggered in response to its own activation or that of other unrelated resistance (R) proteins. We investigated the role of RPM1 turnover in RPM1-mediated resistance and showed that degradation of RPM1 is not associated with HR or resistance mediated by this R protein. Likewise, the runaway cell death phenotype in the lsd1 mutant was not associated with RPM1 degradation and did not alter RPM1-derived resistance. RPM1 stability and RPM1-mediated resistance were dependent on the double-stranded RNA binding (DRB) proteins 1 and 4. Interestingly, the function of DRB1 in RPM1-mediated resistance was not associated with its role in pre-miRNA processing. The DRB3 and DRB5 proteins negatively regulated RPM1-mediated resistance and a mutation in these completely or partially restored resistance in the drb1, drb2, and drb4 mutant backgrounds. Conversely, plants overexpressing DRB5 showed attenuated RPM1-mediated resistance. A similar role for DRBs in basal and R-mediated resistance suggests that these proteins play a general role in bacterial resistance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Enfermedades de las Plantas/genética , Pseudomonas syringae/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Unión al ARN/metabolismo
4.
Plant Physiol ; 172(1): 221-34, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27356973

RESUMEN

The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.


Asunto(s)
Glycine max/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Respuesta de Proteína Desplegada , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Virus del Mosaico/metabolismo , Virus del Mosaico/patogenicidad , Factor 1 de Elongación Peptídica/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Potyvirus/patogenicidad , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Glycine max/genética , Glycine max/virología , Virulencia , Replicación Viral
5.
Phytopathology ; 107(12): 1452-1461, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28609156

RESUMEN

Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Plantas/inmunología , Transducción de Señal , Factores de Virulencia
6.
New Phytol ; 212(3): 627-636, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27411159

RESUMEN

Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL) or the isochorismate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We investigated the relative contributions of PAL and ICS to defense-related SA accumulation in soybean (Glycine max). Soybean plants silenced for five PAL isoforms or two ICS isoforms were analyzed for SA concentrations and SA-derived defense responses to the hemibiotrophic pathogens Pseudomonas syringae and Phytophthora sojae. We show that, unlike in Arabidopsis, PAL and ICS pathways are equally important for pathogen-induced SA biosynthesis in soybean. Knock-down of either pathway shuts down SA biosynthesis and abrogates pathogen resistance. Moreover, unlike in Arabidopsis, pathogen infection is associated with the suppression of ICS gene expression. Pathogen-induced biosynthesis of SA via the PAL pathway correlates inversely with phenylalanine concentrations. Although infections with either virulent or avirulent strains of the pathogens increase SA concentrations, resistance protein-mediated response to avirulent P. sojae strains may function in an SA-independent manner. These results show that PAL- and ICS-catalyzed reactions function cooperatively in soybean defense and highlight the importance of PAL in pathogen-induced SA biosynthesis.


Asunto(s)
Vías Biosintéticas , Glycine max/enzimología , Transferasas Intramoleculares/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Transferasas Intramoleculares/genética , Isoenzimas/metabolismo , Fenilanina Amoníaco-Liasa/genética , Phytophthora/fisiología , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glycine max/genética , Glycine max/microbiología
7.
Plant Physiol ; 165(3): 1269-1284, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24872380

RESUMEN

Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector.

8.
Plant Cell ; 24(4): 1654-74, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22492810

RESUMEN

The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF SA INSENSITIVITY OF npr1-5 (SSI2) or exogenous application of glycerol, induced NO accumulation. Furthermore, both NO application and reduction in 18:1 induced the expression of similar sets of nuclear genes. The altered defense signaling in the ssi2 mutant was partially restored by a mutation in NITRIC OXIDE ASSOCIATED1 (NOA1) and completely restored by double mutations in NOA1 and either of the nitrate reductases. Biochemical studies showed that 18:1 physically bound NOA1, in turn leading to its degradation in a protease-dependent manner. In concurrence, overexpression of NOA1 did not promote NO-derived defense signaling in wild-type plants unless 18:1 levels were lowered. Subcellular localization showed that NOA1 and the 18:1 synthesizing SSI2 proteins were present in close proximity within the nucleoids of chloroplasts. Indeed, pathogen-induced or low-18:1-induced accumulation of NO was primarily detected in the chloroplasts and their nucleoids. Together, these data suggest that 18:1 levels regulate NO synthesis, and, thereby, NO-mediated signaling, by regulating NOA1 levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/farmacología , Ácido Oléico/metabolismo , Transducción de Señal/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Óxido Nítrico Sintasa/genética , Fenotipo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
9.
New Phytol ; 202(2): 485-498, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24372490

RESUMEN

Nonrace specific disease resistance 1 (NDR1) is a conserved downstream regulator of resistance (R) protein-derived signaling. We identified two NDR1-like sequences (GmNDR1a, b) from soybean, and investigated their roles in R-mediated resistance and pathogen effector detection. Silencing GmNDR1a and b in soybean shows that these genes are required for resistance derived from the Rpg1-b, Rpg3, and Rpg4 loci, against Pseudomonas syringae (Psg) expressing avrB, avrB2 and avrD1, respectively. Immunoprecipitation assays show that the GmNDR1 proteins interact with the AvrB2 and AvrD1 Psg effectors. This correlates with the enhanced virulence of Psg avrB2 and Psg avrD1 in GmNDR1-silenced rpg3 rpg4 plants, even though these strains are not normally more virulent on plants lacking cognate R loci. The GmNDR1 proteins interact with GmRIN4 proteins, but not with AvrB, or its cognate R protein Rpg1-b. However, the GmNDR1 proteins promote AvrB-independent activation of Rpg1-b when coexpressed with a phosphomimic derivative of GmRIN4b. The role of GmNDR1 proteins in Rpg1-b activation, their direct interactions with AvrB2/AvrD1, and a putative role in the virulence activities of Avr effectors, provides the first experimental evidence in support of the proposed role for NDR1 in transducing extracellular pathogen-derived signals.


Asunto(s)
Proteínas Bacterianas/metabolismo , Resistencia a la Enfermedad/genética , Glycine max/genética , Enfermedades de las Plantas , Pseudomonas syringae/patogenicidad , Proteínas de Soja/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Transducción de Señal , Proteínas de Soja/metabolismo , Glycine max/metabolismo , Glycine max/microbiología , Factores de Transcripción/metabolismo , Virulencia
10.
J Exp Bot ; 65(7): 1849-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24591049

RESUMEN

Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of related or unrelated pathogens. SAR involves the generation of multiple signals at the site of primary infection, which arms distal portions against subsequent secondary infections. The last decade has witnessed considerable progress, and a number of chemical signals contributing to SAR have been isolated and characterized. The diverse chemical nature of these chemicals had led to the growing belief that SAR might involve interplay of multiple diverse and independent signals. However, recent results suggest that coordinated signalling from diverse signalling components facilitates SAR in plants. This review mainly discusses organized signalling by two such chemicals, glycerol-3-phoshphate and azelaic acid, and the role of basal salicylic acid levels in G3P-conferred SAR.


Asunto(s)
Ácidos Dicarboxílicos/metabolismo , Glicerofosfatos/metabolismo , Inmunidad de la Planta , Plantas/inmunología , Ácido Salicílico/metabolismo , Inmunidad Adaptativa , Transporte Biológico
11.
Front Plant Sci ; 15: 1421221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224853

RESUMEN

Eukaryotic elongation factors (eEFs) are protein factors that mediate the extension of peptide chain, among which eukaryotic elongation factor 1 alpha (eEF1A) is one of the most abundant protein synthesis factors. Previously we showed that the P3 protein of Soybean mosaic virus (SMV), one of the most destructive and successful viral pathogens of soybean, targets a component of the soybean translation elongation complex to facilitate its pathogenesis. Here, we conducted a systematic analyses of the soybean eEF (GmeEF) gene family in soybean and examinedits role in virus resistance. In this study, GmeEF family members were identified and characterized based on sequence analysis. The 42 members, which were unevenly distributed across the 15 chromosomes, were renamed according to their chromosomal locations. The GmeEF members were further divided into 12 subgroups based on conserved motif, gene structure, and phylogenetic analyses. Analysis of the promoter regions showed conspicuous presence of myelocytomatosis (MYC) and ethylene-responsive (ERE) cis-acting elements, which are typically involved in drought and phytohormone response, respectively, and thereby in plant stress response signaling. Transcriptome data showed that the expression of 15 GmeEF gene family members changed significantly in response to SMV infection. To further examine EF1A function in pathogen response, three different Arabidopsis mutants carrying T-DNA insertions in orthologous genes were analyzed for their response to Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV). Results showed that there was no difference in viral response between the mutants and the wild type plants. This study provides a systematic analysis of the GmeEF gene family through analysis of expression patterns and predicted protein features. Our results lay a foundation for understanding the role of eEF gene in soybean anti-viral response.

12.
PLoS Pathog ; 7(11): e1002318, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22072959

RESUMEN

EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Hidrolasas de Éster Carboxílico/metabolismo , Carmovirus/inmunología , Proteínas de Unión al ADN/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Secuencia de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas , Hidrolasas de Éster Carboxílico/biosíntesis , Hidrolasas de Éster Carboxílico/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/virología , Proteínas de Plantas/biosíntesis , Unión Proteica , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Estructura Cuaternaria de Proteína , Proteínas Represoras/metabolismo , Alineación de Secuencia , Transducción de Señal
13.
New Phytol ; 197(4): 1225-1235, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23278373

RESUMEN

The Pseudomonas syringae effector AvrB interacts with four related soybean (Glycine max) proteins (GmRIN4a-d), three (GmRIN4b, c, d) of which also interact with the cognate resistance (R) protein, Rpg1-b. Here, we investigated the specific requirements for the GmRIN4 proteins in R-mediated resistance and examined the mechanism of Rpg1-b activation. Using virus-induced gene silencing, we show that only GmRIN4a and b are required for Rpg1-b-mediated resistance. In planta binding assays show that GmRIN4a can associate with Rpg1-b indirectly via GmRIN4b. Pathogen-delivered AvrB induces the phosphorylation of GmRIN4b alone, and prevents interactions between GmRIN4b and Rpg1-b or GmRIN4a. Consistent with this result, a phosphomimic derivative of GmRIN4b (pm4b) fails to bind Rpg1-b and GmRIN4a. Conversely, a phosphodeficient derivative of GmRIN4b (pd4b) continues to bind the R protein and GmRIN4a, in the presence of AvrB. Coexpression of Rpg1-b with pm4b, but not GmRIN4b or pd4b, induces cell death and ion leakage in the heterologous Nicotiana benthamiana. Our data suggest that the AvrB-induced phosphorylation of GmRIN4b, and the subsequent inhibition of interaction among GmRIN4b, GmRIN4a and Rpg1-b, might activate the R protein. Furthermore, even though GmRIN4c and d are not required for Rpg1-b-derived resistance, they do function in resistance derived from other R loci.


Asunto(s)
Resistencia a la Enfermedad/genética , Glycine max/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/fisiología , Pseudomonas syringae/inmunología , Proteínas Bacterianas/metabolismo , Fosforilación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/microbiología
14.
Proc Natl Acad Sci U S A ; 107(30): 13538-43, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20624951

RESUMEN

Light harvested by plants is essential for the survival of most life forms. This light perception ability requires the activities of proteins termed photoreceptors. We report a function for photoreceptors in mediating resistance (R) protein-derived plant defense. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are required for the stability of the R protein HRT, and thereby resistance to Turnip Crinkle virus (TCV). Exposure to darkness or blue-light induces degradation of CRY2, and in turn HRT, resulting in susceptibility. Overexpression of HRT can compensate for the absence of PHOT2 but not CRY2. HRT does not directly associate with either CRY2 or PHOT2 but does bind the CRY2-/PHOT2-interacting E3 ubiquitin ligase, COP1. Application of the proteasome inhibitor, MG132, prevents blue-light-dependent degradation of HRT, consequently these plants show resistance to TCV under blue-light. We propose that CRY2/PHOT2 negatively regulate the proteasome-mediated degradation of HRT, likely via COP1, and blue-light relieves this repression resulting in HRT degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Criptocromos/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Carmovirus/fisiología , Criptocromos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata/efectos de la radiación , Immunoblotting , Luz , Microscopía Confocal , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Salicílico/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
15.
Plant Physiol ; 155(1): 464-76, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21030507

RESUMEN

Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling component Enhanced Disease Susceptibility1 function redundantly in this low-18:1-derived pathway to induce SA signaling but do not function in the repression of JA responses. We show that repression of JA-mediated signaling under low-18:1 conditions is mediated via the WRKY50 and WRKY51 proteins. Knockout mutations in WRKY50 and WRKY51 lowered SA levels but did not restore pathogenesis-related gene expression or pathogen resistance to basal levels in the low-18:1-containing Arabidopsis (Arabidopsis thaliana) mutant, suppressor of SA insensitivity2 (ssi2). In contrast, both JA-inducible PDF1.2 (defensin) expression and basal resistance to Botrytis cinerea were restored. Simultaneous mutations in both WRKY genes (ssi2 wrky50 wrky51) did not further enhance the JA or Botrytis-related responses. The ssi2 wrky50 and ssi2 wrky51 plants contained high levels of reactive oxygen species and exhibited enhanced cell death, the same as ssi2 plants. This suggested that high reactive oxygen species levels or increased cell death were not responsible for the enhanced susceptibility of ssi2 plants to B. cinerea. Exogenous SA inhibited JA-inducible PDF1.2 expression in the wild type but not in wrky50 or wrky51 mutant plants. These results show that the WRKY50 and WRKY51 proteins mediate both SA- and low-18:1-dependent repression of JA signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Ciclopentanos/farmacología , Ácido Oléico/metabolismo , Oxilipinas/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Botrytis/efectos de los fármacos , Botrytis/fisiología , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Modelos Biológicos , Mutación/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/genética
16.
PLoS Genet ; 5(7): e1000545, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19578402

RESUMEN

Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Proteínas de Unión al ADN/inmunología , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carmovirus/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Enfermedades de las Plantas/virología
17.
Essays Biochem ; 66(5): 673-681, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35920211

RESUMEN

Systemic acquired resistance (SAR), a type of long-distance immunity in plants, provides long-lasting resistance to a broad spectrum of pathogens. SAR is thought to involve the rapid generation and systemic transport of a mobile signal that prepares systemic parts of the plant to better resist future infections. Exploration of the molecular mechanisms underlying SAR have identified multiple mobile regulators of SAR in the last few decades. Examination of the relationship among several of these seemingly unrelated molecules depicts a forked pathway comprising at least two branches of equal importance to SAR. One branch is regulated by the plant hormone salicylic acid (SA), and the other culminates (based on current knowledge) with the phosphorylated sugar derivative, glycerol-3-phosphate (G3P). This review summarizes the activities that contribute to pathogen-responsive generation of SA and G3P and the components that regulate their systemic transport during SAR.


Asunto(s)
Resistencia a la Enfermedad , Ácido Salicílico , Regulación de la Expresión Génica de las Plantas , Glicerol , Glicerofosfatos , Fosfatos/metabolismo , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Plantas/metabolismo , Ácido Salicílico/metabolismo , Azúcares
18.
Sci Adv ; 8(25): eabm8791, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749505

RESUMEN

Systemic acquired resistance (SAR) involves the generation of systemically transported signal that arms distal plant parts against secondary infections. We show that two phased 21-nucleotide (nt) trans-acting small interfering RNA3a RNAs (tasi-RNA) derived from TAS3a and synthesized within 3 hours of pathogen infection are the early mobile signal in SAR. TAS3a undergoes alternate polyadenylation, resulting in the generation of 555- and 367-nt transcripts. The 555-nt transcripts likely serves as the sole precursor for tasi-RNAs D7 and D8, which cleave Auxin response factors (ARF) 2, 3, and 4 to induce SAR. Conversely, increased expression of ARF3 represses SAR. Knockout mutations in TAS3a or RNA silencing components required for tasi-RNA biogenesis compromise SAR without altering levels of known SAR-inducing chemicals. Both tasi-ARFs and the 367-nt transcripts are mobile and transported via plasmodesmata. Together, we show that tasi-ARFs are the early mobile signal in SAR.

19.
Mol Plant Microbe Interact ; 24(4): 506-15, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21117867

RESUMEN

Omega-3 fatty acid desaturase (FAD3)-catalyzed conversion of linoleic acid to linolenic acid (18:3) is an important step for the biosynthesis of fatty acids as well as the phytohormone jasmonic acid (JA) in plants. We report that silencing three microsomal isoforms of GmFAD3 enhanced the accumulation of Bean pod mottle virus (BPMV) in soybean. The GmFAD3-silenced plants also accumulated higher levels of JA, even though they contained slightly reduced levels of 18:3. Consequently, the GmFAD3-silenced plants expressed JA-responsive pathogenesis-related genes constitutively and exhibited enhanced susceptibility to virulent Pseudomonas syringae. Increased accumulation of BPMV in GmFAD3-silenced plants was likely associated with their JA levels, because exogenous JA application also increased BPMV accumulation. The JA-derived increase in BPMV levels was likely not due to repression of salicylic acid (SA)-derived signaling because the GmFAD3-silenced plants were enhanced in SA-dependent defenses. Furthermore, neither exogenous SA application nor silencing the SA-synthesizing phenylalanine ammonia lyase gene altered BPMV levels in soybean. In addition to the altered defense responses, the GmFAD3-silenced plants also produced significantly larger and heavier seed. Our results indicate that loss of GmFAD3 enhances JA accumulation and, thereby, susceptibility to BPMV in soybean.


Asunto(s)
Comovirus/crecimiento & desarrollo , Ácido Graso Desaturasas/genética , Silenciador del Gen , Glycine max/genética , Semillas/crecimiento & desarrollo , Comovirus/genética , Ciclopentanos/metabolismo , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Microsomas/enzimología , Oxilipinas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo , Glycine max/enzimología , Glycine max/virología
20.
Plant Physiol ; 153(3): 1199-211, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20484023

RESUMEN

Soybean (Glycine max) RPG1-B (for resistance to Pseudomonas syringae pv glycinea) mediates species-specific resistance to P. syringae expressing the avirulence protein AvrB, similar to the nonorthologous RPM1 in Arabidopsis (Arabidopsis thaliana). RPM1-derived signaling is presumably induced upon AvrB-derived modification of the RPM1-interacting protein, RIN4 (for RPM1-interacting 4). We show that, similar to RPM1, RPG1-B does not directly interact with AvrB but associates with RIN4-like proteins from soybean. Unlike Arabidopsis, soybean contains at least four RIN4-like proteins (GmRIN4a to GmRIN4d). GmRIN4b, but not GmRIN4a, complements the Arabidopsis rin4 mutation. Both GmRIN4a and GmRIN4b bind AvrB, but only GmRIN4b binds RPG1-B. Silencing either GmRIN4a or GmRIN4b abrogates RPG1-B-derived resistance to P. syringae expressing AvrB. Binding studies show that GmRIN4b interacts with GmRIN4a as well as with two other AvrB/RPG1-B-interacting isoforms, GmRIN4c and GmRIN4d. The lack of functional redundancy among GmRIN4a and GmRIN4b and their abilities to interact with each other suggest that the two proteins might function as a heteromeric complex in mediating RPG1-B-derived resistance. Silencing GmRIN4a or GmRIN4b in rpg1-b plants enhances basal resistance to virulent strains of P. syringae and the oomycete Phytophthora sojae. Interestingly, GmRIN4a- or GmRIN4b-silenced rpg1-b plants respond differently to AvrB-expressing bacteria. Although both GmRIN4a and GmRIN4b function to monitor AvrB in the presence of RPG1-B, GmRIN4a, but not GmRIN4b, negatively regulates AvrB virulence activity in the absence of RPG1-B.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glycine max/inmunología , Glycine max/microbiología , Inmunidad Innata/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Secuencia Conservada , Prueba de Complementación Genética , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Mutación/genética , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Unión Proteica , Isoformas de Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Glycine max/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA