Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 605(7910): 551-560, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332283

RESUMEN

The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a challenge1-5. Here we describe a general solution to this problem that starts with a broad exploration of the vast space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate the broad applicability of this approach through the de novo design of binding proteins to 12 diverse protein targets with different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and, following experimental optimization, bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder-target complexes, and all five closely match the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein-protein interactions, and should guide improvements of both. Our approach enables the targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications.


Asunto(s)
Proteínas Portadoras , Proteínas , Aminoácidos/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Unión Proteica , Proteínas/química
2.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753503

RESUMEN

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Asunto(s)
Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Antivirales/farmacología , Antivirales/química , Química Farmacéutica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Cristalografía por Rayos X/métodos , Química Clic/métodos , Animales , Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Inhibidores de Proteínas Virales de Fusión/farmacología , Inhibidores de Proteínas Virales de Fusión/química , Perros
3.
Proc Natl Acad Sci U S A ; 117(31): 18431-18438, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690700

RESUMEN

Influenza hemagglutinin (HA) glycoprotein is the primary surface antigen targeted by the host immune response and a focus for development of novel vaccines, broadly neutralizing antibodies (bnAbs), and therapeutics. HA enables viral entry into host cells via receptor binding and membrane fusion and is a validated target for drug discovery. However, to date, only a very few bona fide small molecules have been reported against the HA. To identity new antiviral lead candidates against the highly conserved fusion machinery in the HA stem, we synthesized a fluorescence-polarization probe based on a recently described neutralizing cyclic peptide P7 derived from the complementarity-determining region loops of human bnAbs FI6v3 and CR9114 against the HA stem. We then designed a robust binding assay compatible with high-throughput screening to identify molecules with low micromolar to nanomolar affinity to influenza A group 1 HAs. Our simple, low-cost, and efficient in vitro assay was used to screen H1/Puerto Rico/8/1934 (H1/PR8) HA trimer against ∼72,000 compounds. The crystal structure of H1/PR8 HA in complex with our best hit compound F0045(S) confirmed that it binds to pockets in the HA stem similar to bnAbs FI6v3 and CR9114, cyclic peptide P7, and small-molecule inhibitor JNJ4796. F0045 is enantioselective against a panel of group 1 HAs and F0045(S) exhibits in vitro neutralization activity against multiple H1N1 and H5N1 strains. Our assay, compound characterization, and small-molecule candidate should further stimulate the discovery and development of new compounds with unique chemical scaffolds and enhanced influenza antiviral capabilities.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Polarización de Fluorescencia/métodos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Bibliotecas de Moléculas Pequeñas/química
4.
Proc Natl Acad Sci U S A ; 115(16): 4240-4245, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610325

RESUMEN

The influenza virus hemagglutinin (HA) glycoprotein mediates receptor binding and membrane fusion during viral entry in host cells. Blocking these key steps in viral infection has applications for development of novel antiinfluenza therapeutics as well as vaccines. However, the lack of structural information on how small molecules can gain a foothold in the small, shallow receptor-binding site (RBS) has hindered drug design against this important target on the viral pathogen. Here, we report on the serendipitous crystallization-based discovery of a small-molecule N-cyclohexyltaurine, commonly known as the buffering agent CHES, that is able to bind to both group-1 and group-2 HAs of influenza A viruses. X-ray structural characterization of group-1 H5N1 A/Vietnam/1203/2004 (H5/Viet) and group-2 H3N2 A/Hong Kong/1/1968 (H3/HK68) HAs at 2.0-Å and 2.57-Å resolution, respectively, revealed that N-cyclohexyltaurine binds to the heart of the conserved HA RBS. N-cyclohexyltaurine mimics the binding mode of the natural receptor sialic acid and RBS-targeting bnAbs through formation of similar hydrogen bonds and CH-π interactions with the HA. In H3/HK68, N-cyclohexyltaurine also binds to a conserved pocket in the stem region, thereby exhibiting a dual-binding mode in group-2 HAs. These long-awaited structural insights into RBS recognition by a noncarbohydrate-based small molecule enhance our knowledge of how to target this important functional site and can serve as a template to guide the development of novel broad-spectrum small-molecule therapeutics against influenza virus.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Reacciones Antígeno-Anticuerpo/efectos de los fármacos , Antígenos Virales/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Taurina/análogos & derivados , Sitios de Unión/efectos de los fármacos , Cristalización , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Modelos Moleculares , Imitación Molecular , Estructura Molecular , Ácido N-Acetilneuramínico/química , Unión Proteica/efectos de los fármacos , Conformación Proteica , Receptores Virales/química , Taurina/farmacología
5.
Proc Natl Acad Sci U S A ; 114(2): 206-214, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28003465

RESUMEN

The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ∼16 Šfrom the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.


Asunto(s)
Antivirales/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Indoles/química , Fusión de Membrana , Cristalización , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Estructura Molecular , Unión Proteica , Proteínas Virales de Fusión/química
6.
Proc Natl Acad Sci U S A ; 113(45): 12768-12773, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791120

RESUMEN

Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world's population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen-deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.

7.
Bioorg Med Chem Lett ; 27(16): 3744-3748, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28689973

RESUMEN

Influenza is a highly contagious respiratory viral infection responsible for up to 50,000 deaths per annum in the US alone. The need for new therapeutics with novel modes of action is of paramount importance. We determined the X-ray structure of Arbidol with influenza hemagglutinin and found it was located in a distinct binding pocket. Herein, we report a structure-activity relationship study based on the co-complex combined with bio-layer interferometry to assess the binding of our compounds. Addition of a meta-hydroxy group to the thiophenol moiety of Arbidol to replace a structured water molecule in the binding pocket resulted in a dramatic increase in affinity against both H3 (1150-fold) and H1 (98-fold) hemagglutinin subtypes. Our analogues represent novel leads to yield more potent compounds against hemagglutinin that block viral entry.


Asunto(s)
Antivirales/farmacología , Hemaglutininas/metabolismo , Indoles/farmacología , Gripe Humana/tratamiento farmacológico , Orthomyxoviridae/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
8.
J Bacteriol ; 195(24): 5555-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24123814

RESUMEN

Approximately 50% of cell wall peptidoglycan in Gram-negative bacteria is recycled with each generation. The primary substrates used for peptidoglycan biosynthesis and recycling in the cytoplasm are GlcNAc-MurNAc(anhydro)-tetrapeptide and its degradation product, the free tetrapeptide. This complex process involves ∼15 proteins, among which the cytoplasmic enzyme ld-carboxypeptidase A (LdcA) catabolizes the bond between the last two l- and d-amino acid residues in the tetrapeptide to form the tripeptide, which is then utilized as a substrate by murein peptide ligase (Mpl). LdcA has been proposed as an antibacterial target. The crystal structure of Novosphingobium aromaticivorans DSM 12444 LdcA (NaLdcA) was determined at 1.89-Šresolution. The enzyme was biochemically characterized and its interactions with the substrate modeled, identifying residues potentially involved in substrate binding. Unaccounted electron density at the dimer interface in the crystal suggested a potential site for disrupting protein-protein interactions should a dimer be required to perform its function in bacteria. Our analysis extends the identification of functional residues to several other homologs, which include enzymes from bacteria that are involved in hydrocarbon degradation and destruction of coral reefs. The NaLdcA crystal structure provides an alternate system for investigating the structure-function relationships of LdcA and increases the structural coverage of the protagonists in bacterial cell wall recycling.


Asunto(s)
Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Peptidoglicano/metabolismo , Sphingomonadaceae/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína
9.
Chemistry ; 19(50): 17054-63, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24307364

RESUMEN

The galactopeptide dendrimer GalAG2 ((ß-Gal-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2) binds strongly to the Pseudomonas aeruginosa (PA) lectin LecA, and it inhibits PA biofilms, as well as disperses already established ones. By starting with the crystal structure of the terminal tripeptide moiety GalA-KPL in complex with LecA, a computational mutagenesis study was carried out on the galactotripeptide to optimize the peptide-lectin interactions. 25 mutants were experimentally evaluated by a hemagglutination inhibition assay, 17 by isothermal titration calorimetry, and 3 by X-ray crystallography. Two of these tripeptides, GalA-KPY (dissociation constant (K(D))=2.7 µM) and GalA-KRL (K(D)=2.7 µM), are among the most potent monovalent LecA ligands reported to date. Dendrimers based on these tripeptide ligands showed improved PA biofilm inhibition and dispersal compared to those of GalAG2, particularly G2KPY ((ß-Gal-OC6H4CO-Lys-Pro-Tyr)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2). The possibility to retain and even improve the biofilm inhibition in several analogues of GalAG2 suggests that it should be possible to fine-tune this dendrimer towards therapeutic use by adjusting the pharmacokinetic parameters in addition to the biofilm inhibition through amino acid substitutions.


Asunto(s)
Adhesinas Bacterianas/química , Biopelículas/efectos de los fármacos , Dendrímeros/química , Dendrímeros/farmacología , Glicopéptidos/química , Glicopéptidos/farmacología , Lectinas/química , Oligopéptidos/química , Pseudomonas aeruginosa/fisiología , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Cristalografía por Rayos X , Lectinas/antagonistas & inhibidores , Lectinas/metabolismo , Pseudomonas aeruginosa/metabolismo
10.
Chembiochem ; 11(3): 358-65, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20014271

RESUMEN

The third-generation peptide-dendrimer B1 (AcES)8(BEA)4(K-Amb-Y)2BCD-NH2 (B=branching (S)-2,3-diaminopropanoic acid, K=branching lysine, Amb=4-aminomethyl-benzoic acid) is the first synthetic model for cobalamin-binding proteins and binds cobalamin strongly (K(a)=5.0 x 10(6) M(-1)) and rapidly (k(2)=346 M(-1) s(-1)) by coordination of cobalt to the cysteine residue at the dendrimer core. A structure-activity relationship study is reported concerning the role of negative charges in binding. Substituting glutamates (E) for glutamines (Q) in the outer branches of B1 to form N3 (AcQS)8(BQA)4(B-Amb-Y)(2)BCD-NH2 leads to stronger (K(a)=12.0 x 10(6) M(-1)) but slower (k(2)=67 M(-1) s(-1)) cobalamin binding. CD and FTIR spectra show that the dendrimers and their cobalamin complexes exist as random-coil structures without aggregation in solution. The hydrodynamic radii of the dendrimers determined by diffusion NMR either remains constant or slightly decreases upon binding to cobalamin; this indicates the formation of compact, presumably hydrophobically collapsed complexes.


Asunto(s)
Dendrímeros/química , Péptidos/química , Vitamina B 12/química , Dicroismo Circular , Dendrímeros/síntesis química , Difusión , Ligandos , Resonancia Magnética Nuclear Biomolecular , Péptidos/síntesis química , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Transcobalaminas/química
11.
Sci Adv ; 6(30): eabb5642, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32754640

RESUMEN

To achieve global elimination of hepatitis C virus (HCV), an effective cross-genotype vaccine is needed. The HCV envelope glycoprotein E2 is the main target for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. E2 is structurally flexible and functions in engaging host receptors. Many nAbs bind to the "neutralizing face" on E2, including several broadly nAbs encoded by the VH1-69 germline gene family that bind to a similar conformation (A) of this face. Here, a previously unknown conformation (B) of the neutralizing face is revealed in crystal structures of two of four additional E2-VH1-69 nAb complexes. In this conformation, the E2 front-layer region is displaced upon antibody binding, exposing residues in the back layer for direct antibody interaction. This E2 B structure may represent another conformational state in the viral entry process that is susceptible to antibody neutralization and thus provide a new target for rational vaccine development.


Asunto(s)
Hepatitis C , Vacunas contra Hepatitis Viral , Anticuerpos Neutralizantes , Epítopos , Hepacivirus , Anticuerpos contra la Hepatitis C , Humanos
12.
Cell Host Microbe ; 25(6): 836-844.e5, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31151913

RESUMEN

Egg-based seasonal influenza vaccines are the major preventive countermeasure against influenza virus. However, their effectiveness can be compromised when antigenic changes arise from egg-adaptive mutations on influenza hemagglutinin (HA). The L194P mutation is commonly observed in egg-based H3N2 vaccine seed strains and significantly alters HA antigenicity. An approach to prevent L194P would therefore be beneficial. We show that emergence of L194P during egg passaging can be impeded by preexistence of a G186V mutation, revealing strong incompatibility between these mutations. X-ray structures illustrate that individual G186V and L194P mutations have opposing effects on the HA receptor-binding site (RBS), and when both G186V and L194P are present, the RBS is severely disrupted. Importantly, wild-type HA antigenicity is maintained with G186V, but not L194P. Our results demonstrate that these epistatic interactions can be used to prevent the emergence of mutations that adversely alter antigenicity during egg adaptation.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Mutación Missense , Adaptación Biológica , Animales , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Sitios de Unión , Embrión de Pollo , Cristalografía por Rayos X , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H3N2 del Virus de la Influenza A/genética , Conformación Proteica , Tecnología Farmacéutica/métodos , Cultivo de Virus/métodos
13.
Science ; 363(6431)2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30846569

RESUMEN

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Asunto(s)
Anticuerpos Neutralizantes/química , Materiales Biomiméticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/prevención & control , Piperazinas/farmacología , Piridinas/farmacología , Tetrazoles/farmacología , Inhibidores de Proteínas Virales de Fusión/farmacología , Internalización del Virus/efectos de los fármacos , Administración Oral , Animales , Materiales Biomiméticos/administración & dosificación , Materiales Biomiméticos/farmacocinética , Bronquios/virología , Células Cultivadas , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Ratones , Piperazinas/administración & dosificación , Piperazinas/farmacocinética , Piridinas/administración & dosificación , Piridinas/farmacocinética , Mucosa Respiratoria/virología , Tetrazoles/administración & dosificación , Tetrazoles/farmacocinética , Inhibidores de Proteínas Virales de Fusión/administración & dosificación , Inhibidores de Proteínas Virales de Fusión/farmacocinética
14.
J Med Chem ; 50(25): 6337-42, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17988083

RESUMEN

The target for the anti-inflammatory natural products like amentoflavone ( 2), which act by interfering with the proinflammatory cytokine pathway (e.g., TNF-alpha, IL-1beta, and NO synthase), is not yet well-defined. Data obtained from docking, electronic, and surface analyses shed some light on steric and electronic complementarity of these molecules to p38 MAPK, thereby suggesting a possible mechanism by which they might reduce the production of proinflammatory cytokines.


Asunto(s)
Antiinflamatorios/química , Citocinas/antagonistas & inhibidores , Flavonas/química , Imidazoles/química , Modelos Moleculares , Piridinas/química , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Biflavonoides/química , Flavanonas/química , Flavonoides/química , Glucósidos/química , Enlace de Hidrógeno , Luteolina/química , Relación Estructura-Actividad , Proteínas Quinasas p38 Activadas por Mitógenos/química
15.
Science ; 358(6362): 496-502, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28971971

RESUMEN

Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH-induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule- and peptide-based therapeutics against influenza virus.


Asunto(s)
Antivirales/química , Diseño de Fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Péptidos Cíclicos/química , Internalización del Virus/efectos de los fármacos , Animales , Anticuerpos Neutralizantes/química , Antivirales/farmacología , Antivirales/uso terapéutico , Regiones Determinantes de Complementariedad/química , Cristalografía por Rayos X , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Conformación Proteica
17.
J Mol Biol ; 427(16): 2617-28, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26135247

RESUMEN

Hepatitis C virus (HCV) is a positive-strand RNA virus within the Flaviviridae family. The viral "spike" of HCV is formed by two envelope glycoproteins, E1 and E2, which together mediate viral entry by engaging host receptors and undergoing conformational changes to facilitate membrane fusion. While E2 can be readily produced in the absence of E1, E1 cannot be expressed without E2 and few reagents, including monoclonal antibodies (mAbs), are available for study of this essential HCV glycoprotein. A human mAb to E1, IGH526, was previously reported to cross-neutralize different HCV isolates, and therefore, we sought to further characterize the IGH526 neutralizing epitope to obtain information for vaccine design. We found that mAb IGH526 bound to a discontinuous epitope, but with a major component corresponding to E1 residues 314-324. The crystal structure of IGH526 Fab with this E1 glycopeptide at 1.75Å resolution revealed that the antibody binds to one face of an α-helical peptide. Single mutations on the helix substantially lowered IGH526 binding but did not affect neutralization, indicating either that multiple mutations are required or that additional regions are recognized by the antibody in the context of the membrane-associated envelope oligomer. Molecular dynamics simulations indicate that the free peptide is flexible in solution, suggesting that it requires stabilization for use as a candidate vaccine immunogen.


Asunto(s)
Epítopos/ultraestructura , Anticuerpos contra la Hepatitis C/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/ultraestructura , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Sitios de Unión de Anticuerpos , Línea Celular , Cristalografía por Rayos X , Mapeo Epitopo , Epítopos/inmunología , Células HEK293 , Hepacivirus/inmunología , Humanos , Simulación de Dinámica Molecular
18.
ACS Chem Biol ; 8(9): 1925-30, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23869965

RESUMEN

The galactose specific lectin LecA mediates biofilm formation in the opportunistic pathogen P. aeruginosa . The interaction between LecA and aromatic ß-galactoside biofilm inhibitors involves an intermolecular CH-π T-shape interaction between C(ε1)-H of residue His50 in LecA and the aromatic ring of the galactoside aglycone. The generality of this interaction was tested in a diverse family of ß-galactosides. LecA binding to aromatic ß-galactosides (KD ∼ 8 µM) was consistently stronger than to aliphatic ß-galactosides (KD ∼ 36 µM). The CH-π interaction was observed in the X-ray crystal structures of six different LecA complexes, with shorter than the van der Waals distances indicating productive binding. Related XH/cation/π-π interactions involving other residues were identified in complexes of aromatic glycosides with a variety of carbohydrate binding proteins such as concanavalin A. Exploiting such interactions might be generally useful in drug design against these targets.


Asunto(s)
Proteínas Bacterianas/metabolismo , Galactósidos/metabolismo , Histidina/metabolismo , Lectinas/metabolismo , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/química , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Cristalografía por Rayos X , Galactósidos/química , Histidina/química , Lectinas/química , Modelos Moleculares , Pseudomonas aeruginosa/química
19.
Science ; 342(6162): 1090-4, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24288331

RESUMEN

Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold ß sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.


Asunto(s)
Proteínas del Envoltorio Viral/química , Anticuerpos Neutralizantes/química , Antivirales/química , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Epítopos/química , Epítopos/genética , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Estructura Terciaria de Proteína , Tetraspanina 28/química , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/inmunología
20.
Chem Commun (Camb) ; 47(47): 12634-6, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22031227

RESUMEN

Norbornapeptides (bicyclo[2.2.1]heptapeptides) and related bicyclic homodetic peptides were prepared by solid-phase peptide synthesis using an orthogonal protection scheme. These conformationally rigid peptides cover an almost pristine area of peptide topological space and adopt globular shapes similar to those of short α-helical peptides.


Asunto(s)
Oligopéptidos/química , Oligopéptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA