Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Saudi Pharm J ; 32(1): 101889, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38090737

RESUMEN

The present study utilized molecular docking and density functional theory (DFT) approaches, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties to investigate the binding interactions, reactivity, stability, and drug-likeness of curcumin (1), tetrahydrocurcumin (2), and tetrahydrocurcumin derivatives (3-6) as potential anti-cancer agents. MGL (Molecular Graphic Laboratory) and Discovery Studio Visualizer (DSV) software employed for docking studies. Pharmacokinetic and pharmacodynamic (ADME-Tox) analyses were conducted using SwissADME and pKCSM web servers. Total Electron Density (TED) measurements identified molecular adsorption sites, considering various factors, including quantum chemical characteristics, to assess compound effectiveness using DFT method implanted in the Gaussian software. The binding energy (Eb) from docking simulations was used to evaluate inhibitory potential. ADMET analysis suggested favorable oral bioavailability and pharmacokinetics for all studied substances, excluding compound 4. DFT and docking investigations highlighted compounds 1, 2, and 6 as optimal scaffolds for drug design based on in silico screening tests.

2.
Cancer Cell Int ; 23(1): 88, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165384

RESUMEN

PURPOSE: Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS: In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS: According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION: According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.

3.
Pharmacol Res ; 189: 106695, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780958

RESUMEN

Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Anciano , MicroARNs/genética , Transducción de Señal/fisiología , Neoplasias/patología , Carcinogénesis/genética , Autofagia/genética , Digestión , Regulación Neoplásica de la Expresión Génica
4.
Mol Biol Rep ; 50(1): 85-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309613

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is an invasive phenotype with undesirable clinical features, poor prognosis, and therapy resistance. Ketoprofen is a Non-steroidal anti-inflammatory drug (NSAID) with anti-tumor properties. AIM: To investigate the effects of Ketoprofen on apoptosis and autophagy in TNBC cell line MDA-MB-231. METHODS: The cytotoxic activity of Ketoprofen was assayed by the MTS method. Flowcytometry was utilized to measure the number of apoptotic MDA-MB-231 cells. The expression levels of apoptosis and autophagy markers, JAK2 and STAT3 were determined using quantitative real time-PCR (qRT-PCR) and western blotting methods. RESULTS: Ketoprofen significantly decreased the proliferation of MDA-MB-231 cells compared to control cells. It also considerably induced apoptosis and apoptotic markers in these cells in comparison to controls. Treating the MADA-MB-231 cell line with Ketoprofen had an inhibitory effect on autophagy markers in this cell line. The use of FasL, as a death ligand, and ZB4, as an antibody that blocks the extrinsic pathway of apoptosis, revealed the involvement of the extrinsic pathway in the apoptosis-stimulating effect of Ketoprofen in the MADA-MB-231 cell line. Ketoprofen also hindered the phosphorylation and activation of JAK2 and STAT molecules leading to the inhibition of the JAK/STAT pathway in this TNBC cell line. CONCLUSION: The outcomes of this study uncovered the anti-TNBC activity of Ketoprofen by inducing apoptosis and inhibiting viability and autophagy in MADA-MB-231 cells. Our data also suggested that Ketoprofen impedes apoptosis in TNBC cells by two different mechanisms including the induction of the extrinsic apoptotic pathway and inhibition of the JAK/STAT signaling.


Asunto(s)
Cetoprofeno , Neoplasias de la Mama Triple Negativas , Humanos , Cetoprofeno/farmacología , Cetoprofeno/uso terapéutico , Neoplasias de la Mama Triple Negativas/genética , Transducción de Señal , Quinasas Janus/metabolismo , Línea Celular Tumoral , Factores de Transcripción STAT/metabolismo , Apoptosis , Proliferación Celular , Autofagia
5.
Environ Res ; 227: 115722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948284

RESUMEN

Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.


Asunto(s)
Doxorrubicina , Micelas , Humanos , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Concentración de Iones de Hidrógeno
6.
Environ Res ; 228: 115767, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966991

RESUMEN

The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestructuras , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Proliferación Celular
7.
Wiad Lek ; 76(5 pt 1): 951-955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37326075

RESUMEN

OBJECTIVE: The aim: To study the role of oxidative stress in patients with chronic kidney disease. PATIENTS AND METHODS: Materials and methods: By evaluating MDA and GSH in the serum, we tried to find out how oxidative stress affects CKD patients with end-stage renal dysfunction (ESRD). The study included 90 patients with ESRD disease whom were under hemodialysis treatment, and 30 healthy control people. RESULTS: Results: Urea, creatinine, and MDA levels were noticeably greater in ESRD patients compared to controls, but GSH levels were noticeably lower. In conclusion, oxidative stress can cause more problems to these patients by its involvement in the appearance of metabolic and cardiovascular diseases. CONCLUSION: Conclusions: Furthermore, GSH was reduced significantly in ESRD patients and associated negatively with the level of MDA. This indicates the strong involve¬ment of antioxidants, especially GSH, in the development of oxidative stress in ESRD patients.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia , Estrés Oxidativo , Antioxidantes , Diálisis Renal/efectos adversos
8.
Expert Rev Mol Med ; 24: e37, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36155126

RESUMEN

Cancer is now one of the major causes of death across the globe. The imbalance of cytokine and chemokine secretion has been reported to be involved in cancer development. Meanwhile, CC chemokines have received considerable interest in cancer research. CCR10, as the latest identified CC chemokine receptor (CCR), has been implicated in the recruitment and infiltration of immune cells, especially lymphocytes, into epithelia such as skin via ligation to two ligands, CCL27 and CCL28. Other than homoeostatic function, several mechanisms have been shown to dysregulate CCR10/CCL27-CCL28 expression in the tumour microenvironment. As such, these receptors and ligands mediate T-cell trafficking in the tumour microenvironment. Depending on the types of lymphocytes recruited, CCR10/CCL27-CCL28 interaction has been shown to play conflicting roles in cancer development. If they were T helper and cytotoxic T cells and natural killer cells, the role of this axis would be tumour-suppressive. In contrast, if CCR10/CCL27-CCL28 recruited regulatory T cells, cancer-associated fibroblasts or myeloid-derived suppressor cells, it would lead to tumour progression. In addition to the trafficking of lymphocytes and immune cells, CCR10 also leads to the migration of tumour cells or endothelial cells (called angiogenesis and lymphangiogenesis) to promote tumour metastasis. Furthermore, CCR10 signalling triggers tumour-promoting signalling such as PI3K/AKT and mitogen-activated protein kinase/extracellular signal-regulated kinase, resulting in tumour cell growth. Since CCR10/CCL27-CCL28 is dysregulated in the tumour tissues, it is suggested that analysis and measurement of them might predict tumour development. Finally, it is hoped using therapeutic approaches based on this axis might increase our knowledge to overcome tumour progression.


Asunto(s)
Neoplasias , Receptores CCR10 , Humanos , Células Endoteliales/metabolismo , Ligandos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Quimiocinas CC/metabolismo , Receptores CCR , Neoplasias/etiología , Neoplasias/genética , Quinasas MAP Reguladas por Señal Extracelular , Microambiente Tumoral/genética , Quimiocina CCL27
9.
Anal Biochem ; 655: 114750, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35643149

RESUMEN

Ovarian cancer (OV) is the second most mortal gynecological malignancy. The oncomarker CA125 has been used as the main ovarian cancer marker for diagnosing and screening ovarian cancer in stages I and II. Therefore, sensitive and real-time detection of CA 125 is critical in ovarian cancer monitoring. Various tests are used to diagnose the CA 125. In recent years, modern methods such as biosensor technology have replaced the old tests for rapid, sensitive and specific detection of CA 125. Various types of biosensors are being developed, among which Surface Plasmon resonance (SPR) biosensors are one of the most important and remarkable types. Considering the importance of SPR biosensors in the diagnosis of enocomarker CA 125, the main focus of the present study is to consolidate the research work from the past two decade to the present. Also, the advantages and challenges in SPR biosensors development have been considered in the detection of CA 125 oncomarker.


Asunto(s)
Técnicas Biosensibles , Neoplasias Ováricas , Técnicas Biosensibles/métodos , Detección Precoz del Cáncer , Femenino , Humanos , Neoplasias Ováricas/diagnóstico , Resonancia por Plasmón de Superficie/métodos
10.
Cell Commun Signal ; 20(1): 167, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289525

RESUMEN

Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract.


Asunto(s)
Lectinas , Neoplasias , Humanos , Concanavalina A/farmacología , Concanavalina A/uso terapéutico , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/uso terapéutico , Neoplasias/tratamiento farmacológico , Lectinas de Plantas/uso terapéutico
11.
Bioprocess Biosyst Eng ; 45(6): 981-997, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35396960

RESUMEN

In this study, blend nanofibrous scaffolds were electrospun from polycaprolactone/gelatin (PCL/Gel) blend solutions reinforced by bone morphogenetic protein (BMP)-modified graphene oxide (GO). SEM results showed that uniform and bead-less nanofibers with 270 nm average diameter were obtained from electrospun of PCL/Gel blend solutions. Tensile strength test and contact angle measurement demonstrated that addition of PCL led to higher mechanical and physical properties of the resulting nanofibers. The addition of PCL as well as GO in the blend supports the suitable mechanical strength in the body media. The loading of BMP-modified graphene in the Gel/PCL structure caused the formation of nanofibrous substrate with great resemblance to bone tissue. Gel/PCL-G hybrid nanofibers revealed good biocompatibility in the presence of human osteosarcoma cells, and no trace of cellular toxicity was observed. The cells grown on the scaffolds exhibited a spindle-like and broad morphology and almost uniformly covered the entire nanofiber scaffold. Gel/PCL nanofibers reinforced by graphene oxide-immobilized bone morphogenetic protein was prepared as a promising safe and biocompatible nanofiber with high antibacterial activity for bone tissue engineering.


Asunto(s)
Grafito , Nanofibras , Proteínas Morfogenéticas Óseas , Huesos , Gelatina/química , Humanos , Nanofibras/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
12.
Water Sci Technol ; 86(9): 2303-2335, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36378182

RESUMEN

Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature. The results show that Zn-MOFs are capable of high degradation of the above pollutants and over 90% of degradation was observed in publications. In addition, the reusability percentage was examined and studies showed that the Zn-MOF nanostructure has very good stability and can continue to degrade a high percentage of pollutants after several cycles. This review focuses on Zn-MOFs and their composites. First, the methods of synthesis and characterization of these compounds are given. Finally, the application of these composites in the process of photocatalytic degradation of dye pollutants such as methylene blue, methyl orange, crystal violet, rhodamine B, etc. is explained.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Agua , Estructuras Metalorgánicas/química , Colorantes/química , Contaminantes Ambientales/química , Zinc
13.
J Mol Liq ; 337: 116440, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994607

RESUMEN

This study investigated the possibility of inhibition of the SARS-CoV-2 virus using the compounds alpha-Boswellic acid (ABA) and beta-Boswellic acid (BBA) which are active components in the well-known natural product Boswellia carterii (BC). The SARS-CoV-2 virus reproduces in the body by linking its spike with the cell receptor. At the same time, a pH range (4.5-6) of the cell's lysosomes is considered as a perfect environment to release RNA in the cell cytoplasm. In view of these, docking studies were employed to study the interaction between the spikes of the virus and ABA or BBA using Molecular Graphic Laboratory (MGL) tools and AutoDock Vina application. The binding of the ABA and BBA with the spike of the virus could inhibit its reproduction or provide sufficient time for the immune system to recognize the virus and hence, produce suitable antibodies. In addition, the pKa of ABA, BBA and hydroxychloroquine (HCQ) were calculated using HF/6-311G (d,p) method and then they were compared with the experimental pKa of HCQ. The Lethal Concentrations (LC50) of ABA and BBA were also calculated. In addition, molecular electrostatic potential is reported which indicates the active sites of ABA and BBA.

14.
Parasite Epidemiol Control ; 25: e00347, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38629055

RESUMEN

In the present research, ginger extracted compounds, namely; Gingerol {(1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3-decanone} (1), Zingerone {(4-(4-Hydroxy-3-methoxyphenyl)-2-butanone)} (2), and Shogoals {(E)-1-(4-Hydroxy-3- methoxyphenyl) dec-4-en-3-one)} (3) have been investigated as SARS-Cov-2 inhibitors. The interaction of extracted compounds with the virus's spikes may restrict the virus's reproduction or give time to the body's immune system to detect viruses, consequently producing appropriate antibodies. Gaussian 09 with a 6-311G (d, p) basis set, UCA FUKUI, MGL implement, DSV, and LigPlus software were utilized. The active sites for adsorption were identified using the total electron density (TED), FUKUI function, and Millikan charges. Furthermore, docking analysis clearly showed that the inhibition of viral replication depends on binding energy (Eb) and ligand efficiency (LE). A docking study revealed that the inhibition ability of the studied compounds on SARS-CoV-2 was in the order of 2 > 3 > 1.

15.
Comput Methods Biomech Biomed Engin ; 27(6): 765-774, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37781969

RESUMEN

The Ni and Co doping effect on the ciclopirox (CPX) drug delivery performance of a ZnO nanosheet (ZnO-NS) was investigated theoretically. Doping Ni and Co metals into the ZnO-NS increased the adsorption energy of CPX from -7.9 to -27.4 and -31.7 kcal/mol, respectively. The CPX adsorption reduced the ZnO-NS gap (Eg) from 3.81 to 3.46 eV, while the CPX adsorption reduced the Eg of the Ni- and Co-doped ZnO-NS from 2.74 and 2.68 eV to 1.87 and 1.71 eV, respectively. The CPX adsorption performance increased after doping process. A drug release mechanism was introduced in cancerous tissues based on the PH. .


Asunto(s)
Antineoplásicos , Óxido de Zinc , Ciclopirox/farmacología , Teoría Funcional de la Densidad , Metales
16.
Appl Biochem Biotechnol ; 195(1): 51-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35932371

RESUMEN

This study aimed to evaluate the potential of mesenchymal stem cell-derived exosomes loaded with curcumin (Curc-Exos) as an effective therapeutic strategy for rheumatoid arthritis through modulation of proliferation and inflammatory response in HIG-82 synovial cells. For this purpose, Exos were isolated and characterized with BCA protein assay, DLS, FE-SEM, and TEM. The Curc was embedded by mixing it with Exos in a 1:4 ratio. It was found that the Curc stability has improved after loading on Exos compared to the free Curc. Besides, the in vitro studies using LPS-stimulated HIG-82 synovial cells indicated the efficiency of Curc-Exos in enhancing cytotoxicity and apoptosis compared to the free Curc treatment. It was also revealed that Curc-Exos significantly could reduce the expression levels of anti-apoptotic proteins IAP1 and IAP2 and inflammatory mediators including IL-6, TNF-α, MMP1, and PGE2. This preliminary study confirmed the suitability of Curc-Exos in counteracting the proliferation and inflammatory response of rheumatoid arthritis synovial fibroblasts in vitro.


Asunto(s)
Artritis Reumatoide , Curcumina , Exosomas , Células Madre Mesenquimatosas , Sinoviocitos , Humanos , Exosomas/metabolismo , Sinoviocitos/metabolismo , Curcumina/farmacología , Curcumina/metabolismo , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Proliferación Celular , Células Madre Mesenquimatosas/metabolismo , Fibroblastos/metabolismo
17.
Comput Methods Biomech Biomed Engin ; 26(15): 1889-1897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36580036

RESUMEN

In this research, the application of BeO nanotube (BeONT) as a nanocarrier for Fluorouracil (5-FU) anticancer drug has been studied by density functional theory (DFT) approach. The method ωB97XD with 6-31 G** basis set were employed. A precise surface study, shows that there are two directions for 5-FU adsorption that did not deliver any of the imaginary frequency vibrational spectra, identifying that all relaxation structures are at the lowest energy level. Based on our calculations, the energy of adsorption for 5FU@BeONT structures are range -120 to -168 kJ/mol, in the gas phase and -395 to 4-00 kJ/mol in the aqueous phase. The highest and the lowest values of adsorption energy are both in strong physical adsorption. Due to receiving an electronic charge from 5-FU, BeONT exhibited a p-type semiconducting feature for all positions. In addition, based on natural bond orbital (NBO) analysis, the direction of charge transfer was from fluorine's σ orbitals of the drug to n* orbitals (O and Be atoms) of BeONT with a considerable amount of transferred energy. BeONT can be employed as a potential strong carrier for 5-FU drugs for practical purposes based on our findings.


Asunto(s)
Antineoplásicos , Nanotubos , Sistemas de Liberación de Medicamentos , Fluorouracilo/química , Nanotubos/química
18.
J Mol Model ; 29(2): 47, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656400

RESUMEN

CONTEXT: Zinc oxide nano-tube (ZnONT) nano-structures, which possess chemical stability and non-toxicity in the human body, are considered promising for delivering different drugs. Within this work, we scrutinized the drug delivery capability of the ZnONT and its adsorptional properties as a drug delivery vehicle (DDV) for hydroxyurea (HU) as an anti-cancer drug through density functional theory along with the solvent impacts. Based on the optimized structures, it can be suggested that Zn atoms of ZnONT are the ideal sites on this nano-tube for the adsorption of HU. HU had a strong physical adsorption through the O atom of carbonyl groups onto the local pyramidal site of the ZnONT. At 1.96 Å and Ead of -39.28 kcal/mol, in the configuration which was favorable in terms of energy, there was an interaction between the O atoms of -C=O group of the drug and a Zn atom of the ZnONT. In order to scrutinize the excited state properties of the HU-ZnONT complex, we also examined the UV/Vis data of the HU/ZnONT interaction system. Following the adsorption of HU onto the surface of the ZnONT, there was a significant red-shift based on the maximum absorption wavelength, showing that the ZnONT is an ideal candidate for optic sensors in order to detect and monitor the drug molecule. HU could be released in the cancer tissues where pH was low based on the drug release mechanism. The current work thoroughly investigated the mechanism of interaction between the ZnONT and HU, showing that ZnONT can be used for the smart drug delivery of HU. Overall, the findings suggest that ZnONT could be used as an efficient drug-delivery system for the HU drug to treat various types of cancer. METHODS: In this work we used B3LYP-gCP-D3 functional and the basis set LANL2DZ on the transition metal (Zn) and the basis set cc-pVDZ on the others. GAMESS software program was employed for performing the calculations. we performed analyses, including charge transport, molecular electrostatic potential surface (MEP), energetic, electronic, natural bond orbitals (NBOs), and structural optimizations.


Asunto(s)
Antineoplásicos , Óxido de Zinc , Humanos , Antineoplásicos/química , Hidroxiurea , Sistemas de Liberación de Medicamentos , Adsorción
19.
RSC Adv ; 13(4): 2487-2500, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36741187

RESUMEN

Lung cancer is nowadays among the most prevalent diseases worldwide and features the highest mortality rate among various cancers, indicating that early diagnosis of the disease is of paramount importance. Given that the conventional methods of cancer detection are expensive and time-consuming, special attention has been paid to the provision of less expensive and faster techniques. In recent years, the dramatic advances in nanotechnology and the development of various nanomaterials have led to activities in this context. Recent studies indicate that the graphene oxide (GO) nanomaterial has high potential in the design of nano biosensors for lung cancer detection owing to its unique properties. In the current article, a nano biosensor based on a DNA-GO nanohybrid is introduced to detect deletion mutations causing lung cancer. In this method, mutations were detected using a FAM-labeled DNA probe with fluorescence spectrometry. GO was synthesized according to Hummers' method and examined and confirmed using Fourier Transform Infrared (FT-IR) Spectrometry and UV-vis spectrometry methods and Transmission Electron Microscopy (TEM) images.

20.
Chemosphere ; 311(Pt 1): 136804, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36228723

RESUMEN

Keeping the high potential of some microorganisms in adsorption of radionuclides in view, the adsorption properties of Enterobacter cloacae towards uranium were attentively scrutinized, and then it was used for preconcentration of uranium in different samples, using Enterobacter cloacae/carbon nanotube composite. First, using ultrasonic agitation, the effects of operational factors on biosorption of uranium on the inactive Enterobacter cloacae were appraised and modeled by central composite design, and a comprehensive study was performed on the equilibrium, kinetics, thermodynamic, and selectivity aspects of biosorption. The optimization studies along with the evaluations of the adsorption properties revealed that Enterobacter cloacae have a high affinity for fast and selective biosorption of uranium ions, at pH 5.1. Second, the Enterobacter cloacae/carbon nanotube was synthesized, characterized, and utilized for preconcentration of uranium in different samples, using a mini-column packed with the composite. The optimization of operational factors on recovery of uranium, using the central composite design, showed that uranium can be quantitively adsorbed at a sample flow rate lower than 4.5 mL min-1 and the desorption could be accomplished with 3.0 mL HCl 0.6 M solution. Finally, the mini-column was exploited for preconcentration and determination of uranium in different samples. The results revealed the low detection limit (0.015 µg.L-1), high precision (RSDs ≤3.92%), and good accuracy of the proposed procedure.


Asunto(s)
Nanotubos de Carbono , Uranio , Uranio/análisis , Adsorción , Enterobacter cloacae , Iones , Cinética , Agua , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA