Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 17: 122-132, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31909085

RESUMEN

Micro-dystrophin (µDys) gene therapeutics can improve striated muscle structure and function in different animal models of Duchenne muscular dystrophy. Most studies, however, used young mdx mice that lack a pronounced dystrophic phenotype, short treatment periods, and limited muscle function tests. We, therefore, determined the relative efficacy of two previously described µDys gene therapeutics (rAAV6:µDysH3 and rAAV6:µDys5) in 6-month-old mdx mice using a 6-month treatment regimen and forced exercise. Forelimb and hindlimb grip strength, metabolic rate (VO2 max), running efficiency (energy expenditure), and serum creatine kinase levels similarly improved in mdx mice treated with either vector. Both vectors produced nearly identical dose-responses in all assays. They also partially prevented the degenerative effects of repeated high-intensity exercise on muscle histology, although none of the metrics examined was restored to normal wild-type levels. Moreover, neither vector had any consistent effect on respiration while exercising. These data together suggest that, although µDys gene therapy can improve isolated and systemic muscle function, it may be only partially effective when dystrophinopathies are advanced or when muscle structure is significantly challenged, as with high-intensity exercise. This further suggests that restoring muscle function to near-normal levels will likely require ancillary or combinatorial treatments capable of enhancing muscle strength.

2.
J Nutr Biochem ; 53: 96-103, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29202274

RESUMEN

The NLR family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in insulin resistance and the pathogenesis of type 2 diabetes. Red raspberry (RB) contains high amounts of dietary fibers and polyphenolic compounds, which are known for their anti-oxidative and anti-inflammatory effects. This study evaluated the preventive effects of RB supplementation on the NLRP3 inflammasome activation and associated metabolic abnormalities induced by high fat diet (HFD). Wild-type male mice (six weeks old) were randomized into 4 groups receiving a control or typical western HFD supplemented with or without 5% freeze-dried RB for 12 weeks, when mice were sacrificed for tissue collection. HFD feeding substantially increased body weight, which was alleviated by RB supplementation towards the end of the feeding trial. Dietary RB restored the baseline blood glucose level, ameliorating glucose intolerance and insulin resistance, which were aggravated by HFD. Additionally, HFD reduced O2 expenditure and CO2 production, which were ameliorated by RB consumption. The liver is the key site for energy metabolism and a key peripheral tissue responsive to insulin. RB supplementation reduced hepatic lipid accumulation in HFD mice. In agreement, RB consumption suppressed hepatic NLRP3 inflammasome activation and reduced interleukin (IL)-1ß and IL-18 production in HFD mice, accompanied with normalized mitochondriogenesis. These results suggest that RB consumption improves insulin resistance and metabolic dysfunction in diet-induced obesity, which is concomitant with suppression of NLRP3 inflammasome elicited by HFD. Thus, dietary RB intake is a promising strategy for ameliorating diet-induced metabolic abnormalities.


Asunto(s)
Inflamasomas/efectos de los fármacos , Hígado/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Obesidad/dietoterapia , Rubus , Animales , Dieta Alta en Grasa/efectos adversos , Inflamasomas/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Obesidad/etiología , Obesidad/metabolismo
3.
J Appl Physiol (1985) ; 123(5): 1126-1138, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28663375

RESUMEN

The fukutin-related protein P448L mutant mouse replicates many pathologies common to limb girdle muscular dystrophy 2i (LGMD2i) and is a potentially strong candidate for relevant drug screening studies. Because striated muscle function remains relatively uncharacterized in this mouse, we sought to identify metabolic, functional and histological metrics of exercise and cardiac performance. This was accomplished by quantifying voluntary exercise on running wheels, forced exercise on respiratory treadmills and cardiac output with echocardiography and isoproterenol stress tests. Voluntary exercise revealed few differences between wild-type and P448L mice. By contrast, peak oxygen consumption (VO2peak) was either lower in P448L mice or reduced with repeated low intensity treadmill exercise while it increased in wild-type mice. P448L mice fatigued quicker and ran shorter distances while expending 2-fold more calories/meter. They also received over 6-fold more motivational shocks with repeated exercise. Differences in VO2peak and resting metabolic rate were consistent with left ventricle dysfunction, which often develops in human LGMD2i patients and was more evident in female P448L mice, as indicated by lower fractional shortening and ejection fraction values and higher left ventricle systolic volumes. Several traditional markers of dystrophinopathies were expressed in P448L mice and were exacerbated by exercise, some in a muscle-dependent manner. These include elevated serum creatine kinase and muscle central nucleation, smaller muscle fiber cross-sectional area and more striated muscle fibrosis. These studies together identified several markers of disease pathology that are shared between P448L mice and human subjects with LGMD2i. They also identified novel metrics of exercise and cardiac performance that could prove invaluable in preclinical drug trials.NEW & NOTEWORTHY Limb-girdle muscular dystrophy 2i is a rare dystroglycanopathy that until recently lacked an appropriate animal model. Studies with the FKRP P448L mutant mouse began assessing muscle structure and function as well as running gait. Our studies further characterize systemic muscle function using exercise and cardiac performance. They identified many markers of respiratory, cardiac and skeletal muscle function that could prove invaluable to better understanding the disease and more importantly, to preclinical drug trials.


Asunto(s)
Tolerancia al Ejercicio , Corazón/fisiopatología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Cinturas/fisiopatología , Consumo de Oxígeno , Función Ventricular Izquierda , Animales , Modelos Animales de Enfermedad , Ecocardiografía Doppler , Metabolismo Energético , Femenino , Fibrosis , Marcha , Predisposición Genética a la Enfermedad , Corazón/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Fatiga Muscular , Fuerza Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Mutación , Pentosiltransferasa , Fenotipo , Proteínas/genética , Carrera , Caracteres Sexuales , Factores Sexuales , Volumen Sistólico , Factores de Tiempo , Transferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA