Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Angew Chem Int Ed Engl ; 61(3): e202105678, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34128306

RESUMEN

Nanoparticles have long been recognized for their unique properties, leading to exciting potential applications across optics, electronics, magnetism, and catalysis. These specific functions often require a designed organization of particles, which includes the type of order as well as placement and relative orientation of particles of the same or different kinds. DNA nanotechnology offers the ability to introduce highly addressable bonds, tailor particle interactions, and control the geometry of bindings motifs. Here, we discuss how developments in structural DNA nanotechnology have enabled greater control over 1D, 2D, and 3D particle organizations through programmable assembly. This Review focuses on how the use of DNA binding between nanocomponents and DNA structural motifs has progressively allowed the rational formation of prescribed particle organizations. We offer insight into how DNA-based motifs and elements can be further developed to control particle organizations and how particles and DNA can be integrated into nanoscale building blocks, so-called "material voxels", to realize designer nanomaterials with desired functions.

2.
Nat Mater ; 19(7): 789-796, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31932669

RESUMEN

The ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. Here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels. These material voxels consist of 3D DNA frames that integrate nano-objects within their scaffold, thus enabling the object's valence and coordination to be determined by the frame's vertices, which can bind to each other through hybridization. Such DNA material voxels define the lattice symmetry through the spatially prescribed valence decoupling the 3D assembly process from the nature of the nanocomponents, such as their intrinsic properties and shapes. We show this by assembling metallic and semiconductor nanoparticles and also protein superlattices. We support the technological potential of such an assembly approach by fabricating light-emitting 3D arrays with diffraction-limited spectral purity and 3D enzymatic arrays with increased activity.


Asunto(s)
ADN de Cadena Simple/química , Nanoestructuras/química , Ingeniería Química , Cristalización , Estructura Molecular
3.
Acc Chem Res ; 50(4): 680-690, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28248486

RESUMEN

The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit provides a stimuli-responsive element and the second unit acts as internal "bridging memory", shape-memory hydrogels undergoing reversible and switchable transitions between shaped hydrogels and shapeless quasi-liquid states are demonstrated. By using stimuli-responsive hydrogel cross-linking units that can assemble the bridging units by two different input signals, the orthogonally-triggered functions of the shape-memory were shown. Furthermore, a versatile approach to assemble stimuli-responsive DNA-based acrylamide hydrogel films on surfaces is presented. The method involves the activation of the hybridization chain-reaction (HCR) by a surface-confined promoter strand, in the presence of acrylamide chains modified with two DNA hairpin structures and appropriate stimuli-responsive tethers. The resulting hydrogel-modified surfaces revealed switchable stiffness properties and signal-triggered catalytic functions. By applying the method to assemble the hydrogel microparticles, substrate-loaded, stimuli-responsive microcapsules are prepared. The signal-triggered DNA-based hydrogel microcapsules are applied as drug carriers for controlled release. The different potential applications and future perspectives of stimuli responsive hydrogels are discussed. Specifically, the use of these smart materials and assemblies as carriers for controlled drug release and as shape-memory matrices for information storage and inscription and the use of surface-confined stimuli-responsive hydrogels, exhibiting switchable stiffness properties, for catalysis and controlled growth of cells are discussed.


Asunto(s)
ADN/química , Hidrogeles/química , ADN/metabolismo , Hidrogeles/metabolismo , Nanotecnología
4.
J Am Chem Soc ; 139(28): 9662-9671, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28627887

RESUMEN

Mimicking complex cellular dynamic chemical networks being up-regulated or down-regulated by external triggers is one of the challenges in systems chemistry. Constitutional dynamic networks (CDNs), composed of exchangeable components that respond to environmental triggers by self-adaption, provide general means to mimic biosystems. We use the structural and functional information encoded in nucleic acid nanostructures to construct effector (input)-triggered constitutional dynamic networks that reveal adaptable catalytic properties. Specifically, CDNs composed of four exchangeable constituents, AA', BA', AB', and BB', are constructed. In the presence of an effector (input) that controls the stability of one of the constituents, the input-guided up-regulation or down-regulation of the CDN's constituents proceeds. As effectors we apply the fuel-strand stabilization of one of the CDN constituents by the formation of the T-A·T triplex structure, or by the K+-ion-induced stabilization of one of the CDN constituents, via the formation of a K+-ion-stabilized G-quadruplex. Energetic stabilization of one of the CDN constituents leads to a new dynamically adapted network composed of up-regulated and down-regulated constituents. By applying counter triggers to the effector units, e.g., an antifuel strand or 18-crown-6-ether, reconfiguration to the original CDNs is demonstrated. The performance of the CDNs is followed by the catalytic activities of the constituents and by complementary quantitative gel electrophoresis experiments. The orthogonal triggered and switchable operation of the CDNs is highlighted.


Asunto(s)
ADN Catalítico/metabolismo , ADN/química , Simulación de Dinámica Molecular , Nanoestructuras/química , Biocatálisis , ADN/metabolismo , ADN Catalítico/química , Conformación de Ácido Nucleico
5.
J Am Chem Soc ; 138(31): 9895-901, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27428505

RESUMEN

Within the broad interest of assembling chiral left- and right-handed helices of plasmonic nanoparticles (NPs), we introduce the DNA-guided organization of left- or right-handed plasmonic Au NPs on DNA scaffolds. The method involves the self-assembly of stacked 12 DNA quasi-rings interlinked by 30 staple-strands. By the functionalization of one group of staple units with programmed tether-nucleic acid strands and additional staple elements with long nucleic acid chains, acting as promoter strands, the promoter-guided assembly of barrels modified with 12 left- or right-handed tethers is achieved. The subsequent hybridization of Au NPs functionalized with single nucleic acid tethers yields left- or right-handed structures of plasmonic NPs. The plasmonic NP structures reveal CD spectra at the plasmon absorbance, and the NPs are imaged by HR-TEM. Using geometrical considerations corresponding to the left- and right-handed helices of the Au NPs, the experimental CD spectra of the plasmonic Au NPs are modeled by theoretical calculations.


Asunto(s)
ADN/química , Oro/química , Nanopartículas del Metal/química , Técnicas Biosensibles , Dicroismo Circular , Simulación por Computador , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Hibridación de Ácido Nucleico , Óptica y Fotónica , Estereoisomerismo , Temperatura
6.
J Am Chem Soc ; 138(49): 16112-16119, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960351

RESUMEN

We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K+ ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.


Asunto(s)
ADN/química , Hidrogeles/química , Compuestos de Anilina/química , Éteres Corona/química , G-Cuádruplex , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Potasio/química , Estrés Mecánico , Termodinámica , Ureasa/química , Ureasa/metabolismo
7.
Small ; 12(1): 51-75, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26514112

RESUMEN

Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications.

8.
Chemistry ; 22(41): 14504-7, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27490236

RESUMEN

DNA-based shape-memory hydrogels revealing switchable shape recovery in the presence of two orthogonal triggers are described. In one system, a shaped DNA/acrylamide hydrogel is stabilized by duplex nucleic acids and pH-responsive cytosine-rich, i-motif, bridges. Separation of the i-motif bridges at pH 7.4 transforms the hydrogel into a quasi-liquid, shapeless state, that includes the duplex bridges as permanent shape-memory elements. Subjecting the quasi-liquid state to pH 5.0 or Ag(+) ions recovers the hydrogel shape, due to the stabilization of the hydrogel by i-motif or C-Ag(+) -C bridged i-motif. The cysteamine-induced transformation of the duplex/C-Ag(+) -C bridged i-motif hydrogel into a quasi-liquid shapeless state results in the recovery of the shaped hydrogel in the presence of H(+) or Ag(+) ions as triggers. In a second system, a shaped DNA/acrylamide hydrogel is generated by DNA duplexes and bridging Pb(2+) or Sr(2+) ions-stabilized G-quadruplex subunits. Subjecting the shaped hydrogel to the DOTA or KP ligands eliminates the Pb(2+) or Sr(2+) ions from the respective hydrogels, leading to shapeless, memory-containing, quasi-liquid states that restore the original shapes with Pb(2+) or Sr(2+) ions.

9.
Biomacromolecules ; 17(6): 2019-26, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27112709

RESUMEN

Protein expression and selection is an essential process in the modification of biological products. Expressed proteins are selected based on desired traits (phenotypes) from diverse gene libraries (genotypes), whose size may be limited due to the difficulties inherent in diverse cell preparation. In addition, not all genes can be expressed in cells, and linking genotype with phenotype further presents a great challenge in protein engineering. We present a DNA gel-based platform that demonstrates the versatility of two DNA microgel formats to address fundamental challenges of protein engineering, including high protein yield, isolation of gene sets, and protein display. We utilize microgels to show successful protein production and capture of a model protein, green fluorescent protein (GFP), which is further used to demonstrate a successful gene enrichment through fluorescence-activated cell sorting (FACS) of a mixed population of microgels containing the GFP gene. Through psoralen cross-linking of the hydrogels, we have synthesized DNA microgels capable of surviving denaturing conditions while still possessing the ability to produce protein. Lastly, we demonstrate a method of producing extremely high local gene concentrations of up to 32 000 gene repeats in hydrogels 1 to 2 µm in diameter. These DNA gels can serve as a novel cell-free platform for integrated protein expression and display, which can be applied toward more powerful, scalable protein engineering and cell-free synthetic biology with no physiological boundaries and limitations.


Asunto(s)
ADN/química , Hidrogeles/química , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Reactivos de Enlaces Cruzados/química , ADN/genética , Dimetilpolisiloxanos/química , Escherichia coli/genética , Ficusina/química , Proteínas Fluorescentes Verdes/genética , Hidrogeles/síntesis química , Plásmidos , Biosíntesis de Proteínas/genética
10.
Nano Lett ; 15(11): 7773-8, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26488684

RESUMEN

A novel method to assemble acrylamide/acrydite DNA copolymer hydrogels on surfaces, specifically gold-coated surfaces, is introduced. The method involves the synthesis of two different copolymer chains consisting of hairpin A, HA, modified acrylamide copolymer and hairpin B, HB, acrylamide copolymer. In the presence of a nucleic acid promoter monolayer associated with the surface, the hybridization chain reaction between the two hairpin-modified polymer chains is initiated, giving rise to the cross-opening of hairpins HA and HB and the formation of a cross-linked hydrogel on the surface. By the cofunctionalization of the HA- and HB-modified polymer chains with G-rich DNA tethers that include the G-quadruplex subunits, hydrogels of switchable stiffness are generated. In the presence of K(+)-ions, the hydrogel associated with the surface is cooperatively cross-linked by duplex units of HA and HB, and K(+)-ion-stabilized G-quadruplex units, giving rise to a stiff hydrogel. The 18-crown-6-ether-stimulated elimination of the K(+)-ions dissociates the bridging G-quadruplex units, resulting in a hydrogel of reduced stiffness. The duplex/G-quadruplex cooperatively stabilized hydrogel associated with the surface reveals switchable electrocatalytic properties. The incorporation of hemin into the G-quadruplex units electrocatalyzes the reduction of H2O2. The 18-crown-6-ether stimulated dissociation of the hemin/G-quadruplex bridging units leads to a catalytically inactive hydrogel.


Asunto(s)
ADN/química , G-Cuádruplex , Hidrogeles/química , Acrilamida/química , Oro/química , Peróxido de Hidrógeno/química , Hibridación de Ácido Nucleico , Polímeros/química , Potasio/química , Propiedades de Superficie
11.
Angew Chem Int Ed Engl ; 55(13): 4210-4, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26915713

RESUMEN

The synthesis of a shape-memory acrylamide-DNA hydrogel that includes two internal memories is introduced. The hydrogel is stabilized, at pH 7.0, by two different pH-responsive oligonucleotide crosslinking units. At pH 10.0, one of the T-A⋅T triplex DNA bridging units is dissociated, resulting in the dissociation of the hydrogel into a shapeless quasi-liquid state that includes the other oligonucleotide bridges as internal memory. Similarly, at pH 5.0, the second type of bridges is separated, through the formation of C-G⋅C(+) triplex units to yield the shapeless quasi-liquid state that includes the other oligonucleotide bridges as internal memory. By reversible pH triggering of the hydrogel between the values 10.0⇔7.0⇔5.0, the two internal memories cycle the material across shaped hydrogel and shapeless quasi-liquid states. The two memories enable the pH-dictated formation of two different hydrogel structures.


Asunto(s)
ADN/química , Hidrogeles/química , Concentración de Iones de Hidrógeno
12.
Angew Chem Int Ed Engl ; 53(5): 1316-9, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24459055

RESUMEN

The multiparametric nature of nanoparticle self-assembly makes it challenging to circumvent the instabilities that lead to aggregation and achieve crystallization under extreme conditions. By using non-base-pairing DNA as a model ligand instead of the typical base-pairing design for programmability, long-range 2D DNA-gold nanoparticle crystals can be obtained at extremely high salt concentrations and in a divalent salt environment. The interparticle spacings in these 2D nanoparticle crystals can be engineered and further tuned based on an empirical model incorporating the parameters of ligand length and ionic strength.


Asunto(s)
ADN/química , Oro/química , Nanopartículas del Metal/química , Sales (Química)/química , Emparejamiento Base , Cristalización , ADN/metabolismo , Ligandos , Cloruro de Magnesio/química , Hibridación de Ácido Nucleico , Concentración Osmolar , Cloruro de Sodio/química
13.
Sci Adv ; 10(2): eadl0604, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198553

RESUMEN

Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.

14.
JACS Au ; 2(2): 357-366, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35252986

RESUMEN

DNA nanotechnology has increasingly been used as a platform to scaffold enzymes based on its unmatched ability to structure enzymes in a desired format. The capability to organize enzymes has taken many forms from more traditional 2D pairings on individual scaffolds to recent works introducing enzyme organizations in 3D lattices. As the ability to define nanoscale structure has grown, it is critical to fully deconstruct the impact of enzyme organization at the single-scaffold level. Here, we present an open, three-dimensional (3D) DNA wireframe octahedron which is used to create a library of spatially arranged organizations of glucose oxidase and horseradish peroxidase. We explore the contribution of enzyme spacing, arrangement, and location on the 3D scaffold to cascade activity. The experiments provide insight into enzyme scaffold design, including the insignificance of scaffold sequence makeup on activity, an increase in activity at small enzyme spacings of <10 nm, and activity changes that arise from discontinuities in scaffold architecture. Most notably, the experiments allow us to determine that enzyme colocalization itself on the DNA scaffold dominates over any specific enzyme arrangement.

15.
Small ; 7(7): 841-56, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21374801

RESUMEN

The discovery of RNA interference has revitalized the long ongoing pursuit of gene therapy for the treatment of diseases. Nevertheless, despite promising results from experimental studies, there remains a pressing need for the development of nanocarriers that are clinically-relevant, biocompatible, efficient, and that can be tailored to specific disease targets. This review surveys the broad spectrum of nanomaterials and their functional add-ons, and aims to provide a guide towards engineering nanocarriers for effective siRNA delivery.


Asunto(s)
Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Terapia Genética/métodos , Nanopartículas/administración & dosificación , Neoplasias/terapia , Interferencia de ARN , ARN Interferente Pequeño/uso terapéutico
16.
ACS Nano ; 13(5): 5771-5777, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30958671

RESUMEN

DNA-mediated self-assembly of nanoparticles has been of great interest because it enables access to nanoparticle superstructures that cannot be synthesized otherwise. However, the programmability of higher order nanoparticle structures can be easily lost under DNA denaturing conditions. Here, we demonstrate that light can be employed as an external stimulus to master the stability of nanoparticle superlattices (SLs) via the promotion of a reversible photoligation of DNA in SLs. The oligonucleotides attached to the nanoparticles are encoded to ligate using 365 nm light, effectively locking the SLs and rendering them stable under DNA denaturing conditions. The reversible process of unlocking these structures is possible by irradiation with light at 315 nm, recovering the structures to their natural state. Our work inspires an alternative research direction toward postassembly manipulation of nanoparticle superstructures using external stimuli as a tool to enrich the library of additional material forms and their application in different media and environments.


Asunto(s)
ADN/efectos de los fármacos , Nanopartículas del Metal/química , Nanotecnología , Oligonucleótidos/farmacología , ADN/efectos de la radiación , Oro/química , Nanopartículas del Metal/efectos de la radiación , Microscopía Electrónica de Transmisión , Oligonucleótidos/química , Oligonucleótidos/efectos de la radiación
18.
Chem Sci ; 8(5): 3362-3373, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28507706

RESUMEN

Herein, a method to construct stimuli-responsive DNA-acrylamide-based hydrogel microcapsules has been presented. This method involves the use of polyacrylamide chains modified with predesigned nucleic acid hairpin units and optionally single-strand tethers that provide the required hybridization and recognition functions to yield substrate-loaded stimuli-responsive hydrogel-based microcapsules. The synthesis of the microcapsules involves the loading of CaCO3 microparticles with the respective load substrates and the functionalization of the CaCO3 template particles with nucleic acid promoter units. In the presence of the hairpin-modified acrylamide chains, the promoter units induce the hybridization chain reaction (HCR), which leads to the formation of a hydrogel coating, which, after the dissociation of the CaCO3 cores, yields substrate-loaded stimuli-responsive hydrogel microcapsules. One of the microcapsule systems includes, in the hairpin-modified acrylamide constructs, and in the subsequent HCR-generated hydrogel shells, the caged sequences of anti-ATP or anti-cocaine aptamers. In the presence of ATP or cocaine, the duplex-caged aptamer sequences are separated via the formation of ATP- or cocaine-aptamer complexes, which results in the partial separation of the microcapsules and the release of the loads. The second type of microcapsule is cooperatively stabilized by bridges generated by HCR and pH-sensitive duplex units. Under acidic conditions, the pH-sensitive bridges dissociate via the formation of i-motif structures, which results in an increase in the fluidity of the microcapsule shells and the release of the loads. Preliminary studies indicate that ATP- or pH-responsive microcapsules loaded with the anticancer drug, doxorubicin, have a selective cytotoxic effect on MDA-MB-231 cancer cells.

19.
Adv Mater ; 29(6)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27922207

RESUMEN

The synthesis of nucleic acid-functionalized metal-organic frameworks (MOFs) is described. The metal-organic frameworks are loaded with a dye being locked in the structures by means of stimuli-responsive nucleic acid caps. The pH and K+ -ion-triggered release, and switchable release, are demonstrated.


Asunto(s)
Estructuras Metalorgánicas/química , Adsorción , ADN , Ácido Fólico , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA