Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 75(1): 53-65.e7, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31103421

RESUMEN

The M2 muscarinic acetylcholine receptor (M2R) is a prototypical GPCR that plays important roles in regulating heart rate and CNS functions. Crystal structures provide snapshots of the M2R in inactive and active states, but the allosteric link between the ligand binding pocket and cytoplasmic surface remains poorly understood. Here we used solution NMR to examine the structure and dynamics of the M2R labeled with 13CH3-ε-methionine upon binding to various orthosteric and allosteric ligands having a range of efficacy for both G protein activation and arrestin recruitment. We observed ligand-specific changes in the NMR spectra of 13CH3-ε-methionine probes in the M2R extracellular domain, transmembrane core, and cytoplasmic surface, allowing us to correlate ligand structure with changes in receptor structure and dynamics. We show that the M2R has a complex energy landscape in which ligands with different efficacy profiles stabilize distinct receptor conformations.


Asunto(s)
Acetilcolina/química , Carbacol/química , Isoxazoles/química , Pilocarpina/química , Piridinas/química , Compuestos de Amonio Cuaternario/química , Receptor Muscarínico M2/química , Tiadiazoles/química , Acetilcolina/metabolismo , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Carbacol/metabolismo , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Isoxazoles/metabolismo , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Pilocarpina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Piridinas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinámica , Tiadiazoles/metabolismo
2.
Nat Chem Biol ; 16(5): 507-512, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152538

RESUMEN

The α2 adrenergic receptors (α2ARs) are G protein-coupled receptors (GPCRs) that respond to adrenaline and noradrenaline and couple to the Gi/o family of G proteins. α2ARs play important roles in regulating the sympathetic nervous system. Dexmedetomidine is a highly selective α2AR agonist used in post-operative patients as an anxiety-reducing, sedative medicine that decreases the requirement for opioids. As is typical for selective αAR agonists, dexmedetomidine consists of an imidazole ring and a substituted benzene moiety lacking polar groups, which is in contrast to ßAR-selective agonists, which share an ethanolamine group and an aromatic system with polar, hydrogen-bonding substituents. To better understand the structural basis for the selectivity and efficacy of adrenergic agonists, we determined the structure of the α2BAR in complex with dexmedetomidine and Go at a resolution of 2.9 Å by single-particle cryo-EM. The structure reveals the mechanism of α2AR-selective activation and provides insights into Gi/o coupling specificity.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/química , Dexmedetomidina/química , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Sitios de Unión , Microscopía por Crioelectrón , Dexmedetomidina/metabolismo , Dexmedetomidina/farmacología , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Insectos/citología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Receptores Adrenérgicos alfa 2/genética , Simpaticolíticos/química , Simpaticolíticos/farmacología
3.
Nat Chem Biol ; 16(7): 749-755, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483378

RESUMEN

Most drugs acting on G-protein-coupled receptors target the orthosteric binding pocket where the native hormone or neurotransmitter binds. There is much interest in finding allosteric ligands for these targets because they modulate physiologic signaling and promise to be more selective than orthosteric ligands. Here we describe a newly developed allosteric modulator of the ß2-adrenergic receptor (ß2AR), AS408, that binds to the membrane-facing surface of transmembrane segments 3 and 5, as revealed by X-ray crystallography. AS408 disrupts a water-mediated polar network involving E1223.41 and the backbone carbonyls of V2065.45 and S2075.46. The AS408 binding site is adjacent to a previously identified molecular switch for ß2AR activation formed by I3.40, P5.50 and F6.44. The structure reveals how AS408 stabilizes the inactive conformation of this switch, thereby acting as a negative allosteric modulator for agonists and positive allosteric modulator for inverse agonists.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/química , Antagonistas Adrenérgicos beta/química , Alprenolol/química , Norepinefrina/química , Receptores Adrenérgicos beta 2/química , Xinafoato de Salmeterol/química , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas Adrenérgicos beta/farmacología , Regulación Alostérica , Sitio Alostérico , Alprenolol/farmacología , Células HEK293 , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Norepinefrina/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Xinafoato de Salmeterol/farmacología , Termodinámica , Agua/química
4.
Angew Chem Int Ed Engl ; 61(26): e202200269, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35385593

RESUMEN

The µ-opioid receptor (µOR) is the major target for opioid analgesics. Activation of µOR initiates signaling through G protein pathways as well as through ß-arrestin recruitment. µOR agonists that are biased towards G protein signaling pathways demonstrate diminished side effects. PZM21, discovered by computational docking, is a G protein biased µOR agonist. Here we report the cryoEM structure of PZM21 bound µOR in complex with Gi protein. Structure-based evolution led to multiple PZM21 analogs with more pronounced Gi protein bias and increased lipophilicity to improve CNS penetration. Among them, FH210 shows extremely low potency and efficacy for arrestin recruitment. We further determined the cryoEM structure of FH210 bound to µOR in complex with Gi protein and confirmed its expected binding pose. The structural and pharmacological studies reveal a potential mechanism to reduce ß-arrestin recruitment by the µOR, and hold promise for developing next-generation analgesics with fewer adverse effects.


Asunto(s)
Proteínas de Unión al GTP , Receptores Opioides mu , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Proteínas de Unión al GTP/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacología
5.
Proc Natl Acad Sci U S A ; 115(47): 12046-12050, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30404914

RESUMEN

Drugs that treat chronic obstructive pulmonary disease by antagonizing the M3 muscarinic acetylcholine receptor (M3R) have had a significant effect on health, but can suffer from their lack of selectivity against the M2R subtype, which modulates heart rate. Beginning with the crystal structures of M2R and M3R, we exploited a single amino acid difference in their orthosteric binding pockets using molecular docking and structure-based design. The resulting M3R antagonists had up to 100-fold selectivity over M2R in affinity and over 1,000-fold selectivity in vivo. The crystal structure of the M3R-selective antagonist in complex with M3R corresponded closely to the docking-predicted geometry, providing a template for further optimization.


Asunto(s)
Receptor Muscarínico M3/antagonistas & inhibidores , Receptor Muscarínico M3/genética , Acetilcolina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular/métodos , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/metabolismo , Receptor Muscarínico M2/antagonistas & inhibidores , Receptor Muscarínico M2/metabolismo
6.
Chemistry ; 25(64): 14613-14624, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31498478

RESUMEN

Histamine H4 receptor (H4 R) orthologues are G-protein-coupled receptors (GPCRs) that exhibit species-dependent basal activity. In contrast to the basally inactive mouse H4 R (mH4 R), human H4 R (hH4 R) shows a high degree of basal activity. We have performed long-timescale molecular dynamics simulations and rigidity analyses on wild-type hH4 R, the experimentally characterized hH4 R variants S179M, F169V, F169V+S179M, F168A, and on mH4 R to investigate the molecular nature of the differential basal activity. H4 R variant-dependent differences between essential motifs of GPCR activation and structural stabilities correlate with experimentally determined basal activities and provide a molecular explanation for the differences in basal activation. Strikingly, during the MD simulations, F16945.55 dips into the orthosteric binding pocket only in the case of hH4 R, thus adopting the role of an agonist and contributing to the stabilization of the active state. The results shed new light on the molecular mechanism of basal H4 R activation that are of importance for other GPCRs.


Asunto(s)
Fenilalanina/análogos & derivados , Receptores Histamínicos H4/agonistas , Animales , Sitios de Unión , Dominio Catalítico , Dipéptidos , Humanos , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fenilalanina/química , Estabilidad Proteica , Receptores Histamínicos H4/genética , Receptores Histamínicos H4/metabolismo
7.
Bioorg Med Chem ; 25(19): 5084-5094, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28666858

RESUMEN

The dopamine D2 receptor (D2R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D2R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D2R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2/química , Antagonistas de los Receptores de Dopamina D2/farmacología , Haloperidol/análogos & derivados , Haloperidol/farmacología , Receptores de Dopamina D2/metabolismo , Antipsicóticos/química , Antipsicóticos/farmacología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación Puntual , Unión Proteica , Ensayo de Unión Radioligante , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Esquizofrenia/tratamiento farmacológico
8.
Angew Chem Int Ed Engl ; 55(49): 15277-15281, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27862735

RESUMEN

The chemokine receptor CXCR3 is a G protein-coupled receptor that conveys extracellular signals into cells by changing its conformation upon ligand binding. We previously hypothesized that small-molecule allosteric CXCR3-agonists do not bind to the same allosteric binding pocket as 8-azaquinazolinone-based negative allosteric modulators. We have now performed molecular-dynamics (MD) simulations with metadynamics enhanced sampling on the CXCR3 system to refine structures and binding modes and to predict the CXCR3-binding affinities of the biased allosteric agonist FAUC1036 and the negative allosteric modulator RAMX3. We have identified two distinct binding sites; a "shallow" and a second "deeper" pocket to which the biased allosteric agonist FAUC1036 and negative allosteric modulator RAMX3 bind, respectively.


Asunto(s)
Acetamidas/farmacología , Pirimidinonas/farmacología , Receptores CXCR3/agonistas , Receptores CXCR3/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Acetamidas/química , Sitios de Unión/efectos de los fármacos , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Pirimidinonas/química , Bibliotecas de Moléculas Pequeñas/química
9.
J Chem Theory Comput ; 19(22): 8414-8422, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37943175

RESUMEN

For an effective drug, strong binding to the target protein is a prerequisite, but it is not enough. To produce a particular functional response, drugs need to either block the proteins' functions or modulate their activities by changing their conformational equilibrium. The binding free energy of a compound to its target is routinely calculated, but the timescales for the protein conformational changes are prohibitively long to be efficiently modeled via physics-based simulations. Thermodynamic principles suggest that the binding free energies of the ligands with different receptor conformations may infer their efficacy. However, this hypothesis has not been thoroughly validated. We present an actionable protocol and a comprehensive study to show that binding thermodynamics provides a strong predictor of the efficacy of a ligand. We apply the absolute binding free energy perturbation method to ligands bound to active and inactive states of eight G protein-coupled receptors and a nuclear receptor and then compare the resulting binding free energies. We find that carefully designed restraints are often necessary to efficiently model the corresponding conformational ensembles for each state. Our method achieves unprecedented performance in classifying ligands as agonists or antagonists across the various investigated receptors, all of which are important drug targets.


Asunto(s)
Receptores Acoplados a Proteínas G , Conformación Proteica , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Termodinámica , Unión Proteica
10.
Nat Commun ; 14(1): 2138, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059717

RESUMEN

G protein-coupled receptors (GPCRs) within the same subfamily often share high homology in their orthosteric pocket and therefore pose challenges to drug development. The amino acids that form the orthosteric binding pocket for epinephrine and norepinephrine in the ß1 and ß2 adrenergic receptors (ß1AR and ß2AR) are identical. Here, to examine the effect of conformational restriction on ligand binding kinetics, we synthesized a constrained form of epinephrine. Surprisingly, the constrained epinephrine exhibits over 100-fold selectivity for the ß2AR over the ß1AR. We provide evidence that the selectivity may be due to reduced ligand flexibility that enhances the association rate for the ß2AR, as well as a less stable binding pocket for constrained epinephrine in the ß1AR. The differences in the amino acid sequence of the extracellular vestibule of the ß1AR allosterically alter the shape and stability of the binding pocket, resulting in a marked difference in affinity compared to the ß2AR. These studies suggest that for receptors containing identical binding pocket residues, the binding selectivity may be influenced in an allosteric manner by surrounding residues, like those of the extracellular loops (ECLs) that form the vestibule. Exploiting these allosteric influences may facilitate the development of more subtype-selective ligands for GPCRs.


Asunto(s)
Catecolaminas , Receptores Adrenérgicos beta 2 , Ligandos , Receptores Adrenérgicos beta 2/metabolismo , Epinefrina/farmacología , Secuencia de Aminoácidos
11.
Cell Res ; 31(5): 569-579, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33093660

RESUMEN

Beta adrenergic receptors (ßARs) mediate physiologic responses to the catecholamines epinephrine and norepinephrine released by the sympathetic nervous system. While the hormone epinephrine binds ß1AR and ß2AR with similar affinity, the smaller neurotransmitter norepinephrine is approximately tenfold selective for the ß1AR. To understand the structural basis for this physiologically important selectivity, we solved the crystal structures of the human ß1AR bound to an antagonist carazolol and different agonists including norepinephrine, epinephrine and BI-167107. Structural comparison revealed that the catecholamine-binding pockets are identical between ß1AR and ß2AR, but the extracellular vestibules have different shapes and electrostatic properties. Metadynamics simulations and mutagenesis studies revealed that these differences influence the path norepinephrine takes to the orthosteric pocket and contribute to the different association rates and thus different affinities.


Asunto(s)
Norepinefrina , Receptores Adrenérgicos beta 1 , Humanos , Receptores Adrenérgicos beta 1/genética
12.
J Psychopharmacol ; 35(1): 65-77, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33274688

RESUMEN

BACKGROUND: The therapeutic effects of antipsychotic drugs (APDs) are mainly attributed to their postsynaptic inhibitory functions on the dopamine D2 receptor, which, however, cannot explain the delayed onset of full therapeutic efficacy. It was previously shown that APDs accumulate in presynaptic vesicles during chronic treatment and are released like neurotransmitters in an activity-dependent manner triggering an auto-inhibitory feedback mechanism. Although closely mirroring therapeutic action onset, the functional consequence of the APD accumulation process remained unclear. AIMS: Here we tested whether the accumulation of the APD haloperidol (HAL) is required for full therapeutic action in psychotic-like rats. METHODS: We designed a HAL analog compound (HAL-F), which lacks the accumulation property of HAL, but retains its postsynaptic inhibitory action on dopamine D2 receptors. RESULTS/OUTCOMES: By perfusing LysoTracker fluorophore-stained cultured hippocampal neurons, we confirmed the accumulation of HAL and the non-accumulation of HAL-F. In an amphetamine hypersensitization psychosis-like model in rats, we found that subchronic intracerebroventricularly delivered HAL (0.1 mg/kg/day), but not HAL-F (0.3-1.5 mg/kg/day), attenuates psychotic-like behavior in rats. CONCLUSIONS/INTERPRETATION: These findings suggest the presynaptic accumulation of HAL may serve as an essential prerequisite for its full antipsychotic action and may explain the time course of APD action. Targeting accumulation properties of APDs may, thus, become a new strategy to improve APD action.


Asunto(s)
Antipsicóticos/farmacología , Haloperidol/farmacología , Terminales Presinápticos , Trastornos Psicóticos , Vesículas Sinápticas/fisiología , Animales , Células Cultivadas , Antagonistas de los Receptores de Dopamina D2/farmacología , Sistemas de Liberación de Medicamentos/métodos , Hipocampo/metabolismo , Hipocampo/patología , Potenciales Postsinápticos Inhibidores , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/metabolismo , Ratas , Receptores de Dopamina D2/metabolismo
13.
ACS Med Chem Lett ; 11(6): 1316-1323, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32551018

RESUMEN

Proteinase-activated receptor 2 (PAR2) is a class A G protein-coupled receptor whose activation has been associated with inflammatory diseases and cancer, thus representing a valuable therapeutic target. Pathophysiological roles of PAR2 are often characterized using peptidic PAR2 agonists. Peptidic ligands are frequently unstable in vivo and show poor bioavailability, and only a few approaches toward drug-like nonpeptidic PAR2 ligands have been described. The herein-described ligand 5a (IK187) is a nonpeptidic PAR2 agonist with submicromolar potency in a functional assay reflecting G protein activation. The ligand also showed substantial ß-arrestin recruitment. The development of the compound was guided by the crystal structure of PAR2, when the C-terminal end of peptidic agonists was replaced by a small molecule based on a disubstituted phenylene scaffold. IK187 shows preferable metabolic stability and may serve as a lead compound for the development of nonpeptidic drugs addressing PAR2.

14.
J Med Chem ; 63(8): 4349-4369, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32202101

RESUMEN

Muscarinic M3 receptor antagonists and inverse agonists displaying high affinity and subtype selectivity over the antitarget M2 are valuable pharmacological tools and may enable improved treatment of chronic obstructive pulmonary disease (COPD), asthma, or urinary incontinence. On the basis of known M3 antagonists comprising a piperidine or quinuclidine unit attached to a biphenyl carbamate, 5-fluoro substitution was responsible for M3 subtype selectivity over M2, while 3'-chloro substitution substantially increased affinity through a σ-hole interaction. Resultantly, two piperidinyl- and two quinuclidinium-substituted biphenyl carbamates OFH243 (13n), OFH244 (13m), OFH3911 (14n), and OFH3912 (14m) were discovered, which display two-digit picomolar affinities with Ki values from 0.069 to 0.084 nM, as well as high selectivity over the M2 subtype (46- to 68-fold). While weak inverse agonistic properties were determined for the biphenyl carbamates 13m and 13n, neutral antagonism was observed for 14m and 14n and tiotropium under identical assay conditions.


Asunto(s)
Compuestos de Aminobifenilo/química , Agonismo Inverso de Drogas , Halógenos/química , Agonistas Muscarínicos/química , Antagonistas Muscarínicos/química , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inhibidores , Compuestos de Aminobifenilo/farmacología , Animales , Células CACO-2 , Células HEK293 , Halógenos/farmacología , Humanos , Masculino , Simulación del Acoplamiento Molecular/métodos , Agonistas Muscarínicos/metabolismo , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M3/metabolismo
15.
J Med Chem ; 62(10): 5111-5131, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31042379

RESUMEN

Starting from the ß-adrenoceptor agonist isoprenaline and beta-blocker carvedilol, we designed and synthesized three different chemotypes of agonist/antagonist hybrids. Investigations of ligand-mediated receptor activation using bioluminescence resonance energy transfer biosensors revealed a predominant effect of the aromatic head group on the intrinsic activity of our ligands, as ligands with a carvedilol head group were devoid of agonistic activity. Ligands composed of a catechol head group and an antagonist-like oxypropylene spacer possess significant intrinsic activity for the activation of Gαs, while they only show weak or even no ß-arrestin-2 recruitment at both ß1- and ß2-AR. Molecular dynamics simulations suggest that the difference in G protein efficacy and ß-arrestin recruitment of the hybrid ( S)-22, the full agonist epinephrine, and the ß2-selective, G protein-biased partial agonist salmeterol depends on specific hydrogen bonding between Ser5.46 and Asn6.55, and the aromatic head group of the ligands.


Asunto(s)
Agonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/química , Proteínas de Unión al GTP/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Carvedilol/síntesis química , Carvedilol/química , Catecoles/química , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Indicadores y Reactivos , Isoproterenol/síntesis química , Isoproterenol/química , Ligandos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Xinafoato de Salmeterol/farmacología , beta-Arrestinas/efectos de los fármacos , beta-Arrestinas/metabolismo
17.
Nat Commun ; 7: 12298, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27457610

RESUMEN

Crystal structures of G protein-coupled receptor (GPCR) ligand complexes allow a rational design of novel molecular probes and drugs. Here we report the structure-guided design, chemical synthesis and biological investigations of bivalent ligands for dopamine D2 receptor/neurotensin NTS1 receptor (D2R/NTS1R) heterodimers. The compounds of types 1-3 consist of three different D2R pharmacophores bound to an affinity-generating lipophilic appendage, a polyethylene glycol-based linker and the NTS1R agonist NT(8-13). The bivalent ligands show binding affinity in the picomolar range for cells coexpressing both GPCRs and unprecedented selectivity (up to three orders of magnitude), compared with cells that only express D2Rs. A functional switch is observed for the bivalent ligands 3b,c inhibiting cAMP formation in cells singly expressing D2Rs but stimulating cAMP accumulation in D2R/NTS1R-coexpressing cells. Moreover, the newly synthesized bivalent ligands show a strong, predominantly NTS1R-mediated ß-arrestin-2 recruitment at the D2R/NTS1R-coexpressing cells.


Asunto(s)
Multimerización de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Unión Competitiva , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligandos , Relación Estructura-Actividad
18.
Sci Rep ; 6: 33233, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27615810

RESUMEN

G protein-coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass.


Asunto(s)
Receptores de Dopamina D2/metabolismo , Espiperona/metabolismo , Animales , Células CHO , Cricetulus , Antagonistas de Dopamina/metabolismo , Humanos , Cinética , Ligandos , Microscopía Fluorescente , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA