Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256162

RESUMEN

Platelet activation and the complement system are mutually dependent. Here, we investigated the effects of storage time on complement activation and platelet function in routinely produced platelet concentrates. The platelet concentrates (n = 10) were stored at 22 °C for seven days and assessed daily for complement and platelet activation markers. Additionally, platelet function was analyzed in terms of their responsiveness to protease-activated receptor-1 (PAR-1) and thromboxane A2 receptor (TXA2R) activation and their capacity to adhere to collagen. Complement activation increased over the storage period for all analyzed markers, including the C1rs/C1-INH complex (fold change (FC) = 1.9; p < 0.001), MASP-1/C1-INH complex (FC = 2.0; p < 0.001), C4c (FC = 1.8, p < 0.001), C3bc (FC = 4.0; p < 0.01), and soluble C5b-9 (FC = 1.7, p < 0.001). Furthermore, the levels of soluble platelet activation markers increased in the concentrates over the seven-day period, including neutrophil-activating peptide-2 (FC = 2.5; p < 0.0001), transforming growth factor beta 1 (FC = 1.9; p < 0.001) and platelet factor 4 (FC = 2.1; p < 0.0001). The ability of platelets to respond to activation, as measured by surface expression of CD62P and CD63, decreased by 19% and 24% (p < 0.05) for PAR-1 and 69-72% (p < 0.05) for TXA2R activation, respectively, on Day 7 compared to Day 1. The extent of platelet binding to collagen was not significantly impaired during storage. In conclusion, we demonstrated that complement activation increased during the storage of platelets, and this correlated with increased platelet activation and a reduced ability of the platelets to respond to, primarily, TXA2R activation.


Asunto(s)
Receptor PAR-1 , Receptores de Tromboxano A2 y Prostaglandina H2 , Plaquetas , Activación de Complemento , Activación Plaquetaria
2.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298134

RESUMEN

Endothelial cells play an important role in sensing danger signals and regulating inflammation. Several factors are capable of inducing a proinflammatory response (e.g., LPS, histamine, IFNγ, and bradykinin), and these factors act simultaneously during the natural course of the inflammatory reaction. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) also induces a proinflammatory activation of the endothelial cells. Our aim was to investigate the possible cooperation between MASP-1 and other proinflammatory mediators when they are present in low doses. We used HUVECs and measured Ca2+ mobilization, IL-8, E-selectin, VCAM-1 expression, endothelial permeability, and mRNA levels of specific receptors. LPS pretreatment increased the expression of PAR2, a MASP-1 receptor, and furthermore, MASP-1 and LPS enhanced each other's effects in regulating IL-8, E-selectin, Ca2+ mobilization, and changes in permeability in a variety of ways. Cotreatment of MASP-1 and IFNγ increased the IL-8 expression of HUVECs. MASP-1 induced bradykinin and histamine receptor expression, and consequently, increased Ca2+ mobilization was found. Pretreatment with IFNγ enhanced MASP-1-induced Ca2+ mobilization. Our findings highlight that well-known proinflammatory mediators and MASP-1, even at low effective doses, can strongly synergize to enhance the inflammatory response of endothelial cells.


Asunto(s)
Células Endoteliales , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Humanos , Células Endoteliales/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Selectina E/genética , Bradiquinina/farmacología , Interleucina-8 , Lipopolisacáridos/farmacología , Proteínas del Sistema Complemento , Inflamación , Activación de Complemento
3.
Ann Allergy Asthma Immunol ; 122(1): 86-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312677

RESUMEN

BACKGROUND: Hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) is a rare, potentially life-threatening disorder characterized by recurrent edematous attacks. The edema formation is the consequence of interaction of bradykinin and various vasoactive peptides with endothelium. Besides these agents, danazol, a modified testosterone derivative used in these patients to prevent edematous attacks, can also affect the function of the endothelium, because it shifts the blood lipid profile to a pro-atherogenic phenotype. OBJECTIVE: To assess the endothelial function in C1-INH-HAE patients and in healthy matched controls. METHODS: To evaluate the endothelial function, we used the flow-mediated dilation method measured in the region of the brachial artery in 33 C1-INH-HAE patients and in 30 healthy matched controls. Laboratory measurements of standard biochemical parameters were performed on computerized laboratory analyzers. RESULTS: No difference was found in endothelial function (reactive hyperemia, RH) between patients (median, 9.0; 25%-75% percentile, 6.3-12.9) and controls (median, 7.37; 25%-75% percentile, 4.52-9.93). Although we found elevated cardiovascular risk (high body mass index and low-density lipoprotein/high-density lipoprotein ratio) in danazol-treated C1-INH-HAE patients, RH values did not differ between danazol-treated and nontreated patients. Furthermore, risk factors correlated with the endothelial function only in healthy controls and patients not treated with danazol. CONCLUSION: In summary, our results did not indicate any signs of endothelial dysfunction in C1-INH-HAE patients. Moreover, the normal endothelial function in danazol-treated patients with pro-atherogenic lipid profile suggests that elevated bradykinin level or other factor(s) involved in the pathogenesis of edematous attacks may have a protective role against endothelial dysfunction and atherosclerosis.


Asunto(s)
Proteína Inhibidora del Complemento C1/genética , Danazol/uso terapéutico , Células Endoteliales/metabolismo , Endotelio Vascular/fisiología , Antagonistas de Estrógenos/uso terapéutico , Angioedema Hereditario Tipos I y II/tratamiento farmacológico , Lipoproteínas HDL/sangre , Lipoproteínas LDL/sangre , Adulto , Aterosclerosis/diagnóstico , Bradiquinina/sangre , Estudios de Casos y Controles , Danazol/efectos adversos , Progresión de la Enfermedad , Endotelio Vascular/citología , Antagonistas de Estrógenos/efectos adversos , Femenino , Angioedema Hereditario Tipos I y II/diagnóstico , Angioedema Hereditario Tipos I y II/patología , Humanos , Masculino , Encuestas y Cuestionarios , Vasodilatación , Adulto Joven
4.
J Clin Immunol ; 36(2): 160-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26873707

RESUMEN

The elevation of bradykinin (BK) level during attacks of hereditary angioedema due to C1-Inhibitor deficiency (C1-INH-HAE) is well known. We previously demonstrated that endothelin-1 (ET-1) level also increases during C1-INH-HAE attacks. Although BK and ET-1 are both potent vasoactive peptides, the vasoregulatory aspect of the pathomechanism of C1-INH-HAE has not yet been investigated. Hence we studied the levels of vasoactive peptides in controls and in C1-INH-HAE patients, as well as evaluated their changes during C1-INH-HAE attacks. The levels of arginine vasopressin (AVP), adrenomedullin (ADM) and ET-1 were measured in the plasma of 100 C1-INH-HAE patients in inter-attack periods and of 111 control subjects, using BRAHMS Kryptor technologies. In 18 of the 100 C1-INH-HAE patients, the levels of vasoactive peptides were compared in blood samples obtained during attacks, or in inter-attack periods. AVP, ADM and ET-1 levels were similar in inter-attack samples from C1-INH-HAE patients and in the samples of controls, although cardiovascular risk has an effect on the levels of vasoactive peptides in both groups. The levels of all three vasoactive peptides increased during C1-INH-HAE attacks. Moreover, the levels of ET-1 and ADM as well as their changes during attacks were significantly correlated. This study demonstrated that vascular regulation by vasoactive peptides is affected during C1-INH-HAE attacks. Our results suggest that the cooperation of several vasoactive peptides may be necessary to counterbalance the actions of excess BK, and to terminate the attacks. This may reveal a novel pathophysiological aspect of C1-INH-HAE.


Asunto(s)
Adrenomedulina/metabolismo , Angioedemas Hereditarios/metabolismo , Arginina Vasopresina/metabolismo , Endotelina-1/metabolismo , Adrenomedulina/sangre , Adulto , Angioedemas Hereditarios/diagnóstico , Arginina Vasopresina/sangre , Enfermedades Cardiovasculares/etiología , Estudios de Casos y Controles , Proteína Inhibidora del Complemento C1/metabolismo , Progresión de la Enfermedad , Endotelina-1/sangre , Femenino , Angioedema Hereditario Tipos I y II/diagnóstico , Angioedema Hereditario Tipos I y II/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
5.
J Allergy Clin Immunol ; 133(6): 1686-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24522092

RESUMEN

BACKGROUND: Hereditary angioedema (HAE) caused by C1-inhibitor (C1-INH) deficiency (HAE-C1-INH) is a potentially life-threatening rare disease caused by the decreased activity of C1-INH. Lack of C1-INH leads to overproduction of bradykinin, a potent vasoactive peptide. Although angioedema is induced by bradykinin, the function and activation of endothelial cells (ECs), the targets of bradykinin, have not yet been studied during HAE attacks. OBJECTIVE: We studied whether EC function is altered during HAE attacks in comparison with attack-free intervals. METHODS: Forty-six consecutive samples obtained during attacks from 18 patients with HAE-C1-INH were compared with inter-attack samples of the same patients. The patients' sera were tested for von Willebrand factor (VWF) antigen, VWF collagen-binding activity, soluble E-selectin, and endothelin-1 levels by using ELISA and BRAHMS Kryptor technologies. RESULTS: Levels of all 4 EC markers (VWF antigen, VWF collagen-binding activity, soluble E-selectin, and endothelin-1) were significantly increased during HAE attacks. Their increases were even more obvious in the subgroup of patients without any pre-existing risk factors for endothelial dysfunction. CONCLUSION: In this study we demonstrated that ECs are activated during HAE attacks. Our results might suggest the need for revising the knowledge on the pathogenesis of HAE-C1-INH and for reconsidering the role of ECs as a possible novel therapeutic target in patients with this disease.


Asunto(s)
Células Endoteliales/metabolismo , Angioedema Hereditario Tipos I y II/metabolismo , Adulto , Biomarcadores/sangre , Biomarcadores/metabolismo , Células Endoteliales/inmunología , Femenino , Angioedema Hereditario Tipos I y II/diagnóstico , Angioedema Hereditario Tipos I y II/inmunología , Humanos , Masculino , Factores de Riesgo
6.
Sci Rep ; 14(1): 14882, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937560

RESUMEN

Both hypoxia and the complement lectin pathway (CLP) are involved in atherosclerosis and atherosclerosis-related stroke and acute myocardial infarction (AMI). We have previously shown that mannose-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of CLP, induces an inflammatory phenotype of endothelial cells (ECs) by cleaving protease activated receptors (PARs). In the absence of data, we aimed to investigate whether hypoxia and MASP-1 interact at the level of ECs, to better understand their role in atherosclerosis-related diseases. Hypoxia attenuated the wound healing ability of ECs, increased ICAM-1 and decreased ICAM-2 expression and upregulated PAR2 gene expression. Hypoxia and MASP-1 increased GROα and IL-8 production, and endothelial permeability without potentiating each other's effects, whereas they cooperatively disrupted vascular network integrity, activated the Ca2+, CREB and NFκB signaling pathways, and upregulated the expression of E-selectin, a crucial adhesion molecule in neutrophil homing. VCAM-1 expression was not influenced either by hypoxia, or by MASP-1. In summary, hypoxia potentiates the effect of MASP-1 on ECs, at least partially by increasing PAR expression, resulting in interaction at several levels, which may altogether exacerbate stroke and AMI progression. Our findings suggest that MASP-1 is a potential drug target in the acute phase of atherosclerosis-related diseases.


Asunto(s)
Aterosclerosis , Células Endoteliales , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Endoteliales/metabolismo , Transducción de Señal , Hipoxia de la Célula , FN-kappa B/metabolismo , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Selectina E/metabolismo , Selectina E/genética , Interleucina-8/metabolismo
7.
Sci Rep ; 13(1): 13366, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591965

RESUMEN

As many aspects of hereditary angioedema (HAE) due to C1-inhibitor (C1-INH) deficiency (C1-INH-HAE) cannot be explained with elevated bradykinin level alone, it has recently become clear that other factors also play an important role in the pathogenesis. One of these factors could be elevated neutrophil granulocyte (NG) counts, which are associated with increased NG activation in C1-INH-HAE patients; however, their origin has not been elucidated so far. Here, we aimed to investigate whether the excess of NGs is due to disturbed maturation, biased circulating/marginated pool equilibrium or decreased elimination. We enrolled 20 attack-free C1-INH-HAE patients together with 21 healthy controls and collected blood samples. We compared cell surface maturation markers, adhesion molecules, cytokine receptors, and Ca2+-mobilization of NG by flow cytometry, activation markers by ELISA, and NG/endothelial cell adhesion by automated pipetting system. Cell-surface markers showed normal maturation of NGs in C1-INH-HAE patients. Adhesion of NGs to endothelial cells pretreated with lipopolysaccharide or phorbol 12-myristate 13-acetate was significantly weaker in samples from C1-INH-HAE patients and bradykinin had no effect on the adhesion. NGs from C1-INH-HAE patients were in an activated state when assessed by soluble activation markers without any stimulation. Our data support that the maturation of NGs in C1-INH-HAE patients is normal, whereas adhesion properties of patient-derived NGs to the endothelium are reduced compared to those from healthy controls, indicating a bias between the circulating and marginated pools of NGs in patients. Bradykinin may not be responsible for reduced adhesion properties of NGs.


Asunto(s)
Angioedemas Hereditarios , Neutrófilos , Humanos , Células Endoteliales , Bradiquinina , Granulocitos , Endotelio
8.
Orphanet J Rare Dis ; 18(1): 24, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726161

RESUMEN

BACKGROUND: Autoantibodies against C1-inhibitor (C1-INH-Ab) have a diagnostic value in acquired angioedema due to C1-inhibitor deficiency (C1-INH-AAE), even though antibodies can circulate in complexes, which can be undetectable by proven methods. Our aim was to measure C1-INH/C1-INH-Ab complexes (CAC) and investigate their connection to C1-INH-Ab and the changes in their titer over time. RESULTS: 19 patients were diagnosed with C1-INH-AAE in the Hungarian Angioedema Center of Reference and Excellence; 79% of them had an underlying disease. Samples were examined with a newly developed in-house complex ELISA method. Patients with high C1-INH-Ab titer had a CAC titer which did not exceed the normal level and the ones with high CAC titer had a C1-INH-Ab titer which did not exceed the normal level. In case of those patients who had C1-INH-Ab and CAC of the same type of immunoglobulin, the increasing titer of C1-INH-Ab went together with the decreasing level of CAC and vice versa. CAC titer was already increased before the diagnosis of the underlying disease. CONCLUSIONS: Free circulating and complex antibodies are in a dynamically changing equilibrium. CAC measurements can help to predict the development of an underlying disease. The efficiency of the treatment for underlying disease can be monitored by the decreasing CAC titers. Our results show that the CAC can be of important additional information besides the complement panel examination in case of C1-INH-AAE. Measurement of CAC is recommended to be done parallelly with C1-INH-Ab, so as to detect both free and bound antibodies.


Asunto(s)
Angioedema , Angioedemas Hereditarios , Humanos , Angioedema/diagnóstico , Angioedemas Hereditarios/diagnóstico , Proteína Inhibidora del Complemento C1 , Autoanticuerpos , Ensayo de Inmunoadsorción Enzimática
9.
Sci Rep ; 13(1): 13166, 2023 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-37574522

RESUMEN

Vaccinations against SARS-CoV-2 reduce the risk of developing serious COVID-19 disease. Monitoring spike-specific IgG subclass levels after vaccinations may provide additional information on SARS-CoV-2 specific humoral immune response. Here, we examined the presence and levels of spike-specific IgG antibody subclasses in health-care coworkers vaccinated with vector- (Sputnik, AstraZeneca) or mRNA-based (Pfizer-BioNTech, Moderna) vaccines against SARS-CoV-2 and in unvaccinated COVID-19 patients. We found that vector-based vaccines elicited lower total spike-specific IgG levels than mRNA vaccines. The pattern of spike-specific IgG subclasses in individuals infected before mRNA vaccinations resembled that of vector-vaccinated subjects or unvaccinated COVID-19 patients. However, the pattern of mRNA-vaccinated individuals without SARS-CoV-2 preinfection showed a markedly different pattern. In addition to IgG1 and IgG3 subclasses presented in all groups, a switch towards distal IgG subclasses (spike-specific IgG4 and IgG2) appeared almost exclusively in individuals who received only mRNA vaccines or were infected after mRNA vaccinations. In these subjects, the magnitude of the spike-specific IgG4 response was comparable to that of the spike-specific IgG1 response. These data suggest that the priming of the immune system either by natural SARS-CoV-2 infection or by vector- or mRNA-based vaccinations has an important impact on the characteristics of the developed specific humoral immunity.


Asunto(s)
COVID-19 , Inmunoglobulina G , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus , COVID-19/prevención & control , Vacunación , Anticuerpos Antivirales
10.
Front Immunol ; 14: 1162171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051252

RESUMEN

Introduction: While complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood. Methods: We therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome. Results: We show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID. Conclusion: In conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted.


Asunto(s)
COVID-19 , Lectina de Unión a Manosa , Humanos , Síndrome Post Agudo de COVID-19 , COVID-19/genética , SARS-CoV-2 , Genotipo , Lectinas , Gravedad del Paciente , Lectina de Unión a Manosa/genética
11.
Sci Rep ; 12(1): 19759, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396679

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a rare, life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. MIS-C develops with high fever, marked inflammation and shock-like picture several weeks after exposure to, or mild infection with SARS-CoV-2. Deep immune profiling identified activated macrophages, neutrophils, B-plasmablasts and CD8 + T cells as key determinants of pathogenesis together with multiple inflammatory markers. The disease rapidly responds to intravenous immunoglobulin (IVIG) treatment with clear changes of immune features. Here we present the results of a comprehensive analysis of the complement system in the context of MIS-C activity and describe characteristic changes during IVIG treatment. We show that activation markers of the classical, alternative and terminal pathways are highly elevated, that the activation is largely independent of anti-SARS-CoV-2 humoral immune response, but is strongly associated with markers of macrophage activation. Decrease of complement activation is closely associated with rapid improvement of MIS-C after IVIG treatment.


Asunto(s)
COVID-19 , Niño , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , SARS-CoV-2 , Activación de Complemento
12.
Front Immunol ; 13: 1039765, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420270

RESUMEN

The most commonly used markers to assess complement activation are split products that are produced through activation of all three pathways and are located downstream of C3. In contrast, C4d derives from the cleavage of C4 and indicates either classical (CP) or lectin pathway (LP) activation. Although C4d is perfectly able to distinguish between CP/LP and alternative pathway (AP) activation, no well-established markers are available to differentiate between early CP and LP activation. Active enzymes of both pathways (C1s/C1r for the CP, MASP-1/MASP-2 for the LP) are regulated by C1 esterase inhibitor (C1-INH) through the formation of covalent complexes. Aim of this study was to develop validated immunoassays detecting C1s/C1-INH and MASP-1/C1-INH complex levels. Measurement of the complexes reveals information about the involvement of the respective pathways in complement-mediated diseases. Two sandwich ELISAs detecting C1s/C1-INH and MASP-1/C1-INH complex were developed and tested thoroughly, and it was investigated whether C1s/C1-INH and MASP-1/C1-INH complexes could serve as markers for either early CP or LP activation. In addition, a reference range for these complexes in healthy adults was defined, and the assays were clinically validated utilizing samples of 414 COVID-19 patients and 96 healthy controls. The immunoassays can reliably measure C1s/C1-INH and MASP-1/C1-INH complex concentrations in EDTA plasma from healthy and diseased individuals. Both complex levels are increased in serum when activated with zymosan, making them suitable markers for early classical and early lectin pathway activation. Furthermore, measurements of C1-INH complexes in 96 healthy adults showed normally distributed C1s/C1-INH complex levels with a physiological concentration of 1846 ± 1060 ng/mL (mean ± 2SD) and right-skewed distribution of MASP-1/C1-INH complex levels with a median concentration of 36.9 (13.18 - 87.89) ng/mL (2.5-97.5 percentile range), while levels of both complexes were increased in COVID-19 patients (p<0.0001). The newly developed assays measure C1-INH complex levels in an accurate way. C1s/C1-INH and MASP-1/C1-INH complexes are suitable markers to assess early classical and lectin pathway activation. An initial reference range was set and first studies showed that these markers have added value for investigating and unraveling complement activation in human disease.


Asunto(s)
COVID-19 , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Adulto , Humanos , Proteína Inhibidora del Complemento C1 , Proteínas del Sistema Complemento , COVID-19/diagnóstico , Lectinas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Ensayo de Inmunoadsorción Enzimática
13.
Thromb Haemost ; 122(2): 240-256, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35062036

RESUMEN

BACKGROUND: Endothelial and complement activation were both associated with immunothrombosis, a key determinant of COVID-19 severity, but their interrelation has not yet been investigated. OBJECTIVES: We aimed to determine von Willebrand factor (VWF) antigen (VWF:Ag) concentration, VWF collagen binding activity (VWF:CBA), a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activity (ADAMTS13:Ac), and their ratios in hospitalized COVID-19 patients, and to investigate how these parameters and their constellation with complement activation relate to disease severity and in-hospital mortality in COVID-19. METHODS: Samples of 102 hospitalized patients with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 positivity were included in our observational cohort study. Patients were stratified according to the peak severity of COVID-19 disease in agreement with the World Health Organization ordinal scale. Twenty-six convalescent plasma donors with previous COVID-19 disease formed the control group. VWF:Ag concentration and VWF:CBA were determined by enzyme-linked immunosorbent assay (ELISA); ADAMTS13:Ac was determined by fluorescence resonance energy transfer. Complement C3 and C3a were measured by turbidimetry and ELISA, respectively. Clinical covariates and markers of inflammation were extracted from hospital records. RESULTS: VWF:Ag and VWF:CBA were elevated in all groups of hospitalized COVID-19 patients and increased in parallel with disease severity. ADAMTS13:Ac was decreased in patients with severe COVID-19, with the lowest values in nonsurvivors. High (> 300%) VWF:Ag concentrations or decreased (< 67%) ADAMTS13:Ac were associated with higher risk of severe COVID-19 disease or in-hospital mortality. The concomitant presence of decreased ADAMTS13:Ac and increased C3a/C3 ratio-indicating complement overactivation and consumption-was a strong independent predictor of in-hospital mortality. CONCLUSION: Our results suggest that an interaction between the VWF-ADAMTS13 axis and complement overactivation and consumption plays an important role in the pathogenesis of COVID-19.


Asunto(s)
Proteína ADAMTS13/metabolismo , COVID-19/inmunología , Complemento C3/metabolismo , SARS-CoV-2/fisiología , Factor de von Willebrand/metabolismo , Adulto , Anciano , COVID-19/epidemiología , COVID-19/mortalidad , Activación de Complemento , Convalecencia , Femenino , Hospitalización , Humanos , Hungría/epidemiología , Masculino , Persona de Mediana Edad , Nefelometría y Turbidimetría , Índice de Severidad de la Enfermedad , Análisis de Supervivencia
14.
Front Med (Lausanne) ; 9: 796109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572977

RESUMEN

Background: Dysregulation of complement system is thought to be a major player in development of multi-organ damage and adverse outcomes in patients with coronavirus disease 2019 (COVID-19). This study aimed to examine associations between complement system activity and development of severe acute kidney injury (AKI) among hospitalized COVID-19 patients. Materials and Methods: In this multicenter, international study, complement as well as inflammatory and thrombotic parameters were analyzed in COVID-19 patients requiring hospitalization at one US and two Hungarian centers. The primary endpoint was development of severe AKI defined by KDIGO stage 2+3 criteria, while the secondary endpoint was need for renal replacement therapy (RRT). Complement markers with significant associations with endpoints were then correlated with a panel of inflammatory and thrombotic biomarkers and assessed for independent association with outcome measures using logistic regression. Results: A total of 131 hospitalized COVID-19 patients (median age 66 [IQR, 54-75] years; 54.2% males) were enrolled, 33 from the US, and 98 from Hungary. There was a greater prevalence of complement over-activation and consumption in those who developed severe AKI and need for RRT during hospitalization. C3a/C3 ratio was increased in groups developing severe AKI (3.29 vs. 1.71; p < 0.001) and requiring RRT (3.42 vs. 1.79; p < 0.001) in each cohort. Decrease in alternative and classical pathway activity, and consumption of C4 below reference range, as well as elevation of complement activation marker C3a above the normal was more common in patients progressing to severe AKI. In the Hungarian cohort, each standard deviation increase in C3a (SD = 210.1) was independently associated with 89.7% increased odds of developing severe AKI (95% CI, 7.6-234.5%). Complement was extensively correlated with an array of inflammatory biomarkers and a prothrombotic state. Conclusion: Consumption and dysregulation of complement system is associated with development of severe AKI in COVID-19 patients and could represent a promising therapeutic target for reducing thrombotic microangiopathy in SARS-CoV-2 infection.

16.
Clin Rev Allergy Immunol ; 60(3): 318-347, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33725263

RESUMEN

In the last few decades, a substantial body of evidence underlined the pivotal role of bradykinin in certain types of angioedema. The formation and breakdown of bradykinin has been studied thoroughly; however, numerous questions remained open regarding the triggering, course, and termination of angioedema attacks. Recently, it became clear that vascular endothelial cells have an integrative role in the regulation of vessel permeability. Apart from bradykinin, a great number of factors of different origin, structure, and mechanism of action are capable of modifying the integrity of vascular endothelium, and thus, may participate in the regulation of angioedema formation. Our aim in this review is to describe the most important permeability factors and the molecular mechanisms how they act on endothelial cells. Based on endothelial cell function, we also attempt to explain some of the challenging findings regarding bradykinin-mediated angioedema, where the function of bradykinin itself cannot account for the pathophysiology. By deciphering the complex scenario of vascular permeability regulation and edema formation, we may gain better scientific tools to be able to predict and treat not only bradykinin-mediated but other types of angioedema as well.


Asunto(s)
Angioedema , Bradiquinina/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Humanos , Factores de Transcripción
17.
Clin Rev Allergy Immunol ; 60(3): 383-395, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33606193

RESUMEN

Hereditary angioedema (HAE) with C1-inhibitor deficiency belongs to bradykinin-mediated angioedemas. It is characterized by recurrent subcutaneous and/or submucosal swelling episodes (HAE attacks) and erythema marginatum skin rash as a pre-attack (prodromal) phase. HAE attacks were shown to be accompanied by peripheral blood neutrophilia. We aimed to find molecular mechanisms that may explain the distinct role of neutrophil granulocytes in HAE. Plasma levels of blood cells and factors related to neutrophil activation (cytokines, chemokines, chemotactic factors, enzymes, and neutrophil extracellular trap) were measured in plasma samples obtained from patients during symptom-free periods (n = 77), during prodromal phase (n = 8) and attacks (n = 14), during a spontaneously resolved attack (n = 1), and in healthy controls (n = 79). Higher counts of white blood cells, lymphocytes, and neutrophil granulocytes were found in symptom-free patients compared with controls; these cell counts were elevated further during HAE attacks. The level of chemokine (C-C motif) ligand 5, monocyte chemoattractant protein-1, and myeloperoxidase were also higher in the symptom-free patients than in the controls. Levels of monocyte chemoattractant protein-1, leukotriene B4, neutrophil elastase, and myeloperoxidase were elevated during attacks. During erythema marginatum, white blood cells and monocyte count and levels of interleukin 8 were elevated compared with symptom-free period. Similar changes were detected during the attack follow-up. We conclude that the activation of NGs in symptom-free periods and a further increase observed during attacks suggests that NGs may be involved in the pathomechanism of HAE with C1-INH deficiency.


Asunto(s)
Angioedemas Hereditarios , Angioedemas Hereditarios/diagnóstico , Quimiocina CCL2 , Proteína Inhibidora del Complemento C1 , Eritema , Humanos , Activación Neutrófila , Neutrófilos , Peroxidasa , Enfermedades Cutáneas Genéticas
18.
J Leukoc Biol ; 109(4): 793-806, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32946637

RESUMEN

Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles. In the current work, we carried out a careful comparative study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We investigated in parallel the modulation of multiple blood-related cells and functions by medium-sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather promote proinflammatory processes as they increase production of ROS and cytokine secretion from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly active in promoting coagulation. We thus propose that EVs are "custom made," acquiring selective capacities depending on environmental factors prevailing at the time of their biogenesis.


Asunto(s)
Vesículas Extracelulares/metabolismo , Inflamación/patología , Neutrófilos/metabolismo , Adulto , Coagulación Sanguínea , Vesículas Extracelulares/ultraestructura , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interleucina-8/metabolismo , Masculino , Neutrófilos/ultraestructura , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
19.
Front Immunol ; 12: 663187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841446

RESUMEN

Objectives: Uncontrolled thromboinflammation plays an important role in the pathogenesis of coronavirus disease (COVID-19) caused by SARS-CoV-2 virus. Complement was implicated as key contributor to this process, therefore we hypothesized that markers of the complement profile, indicative for the activation state of the system, may be related to the severity and mortality of COVID-19. Methods: In this prospective cohort study samples of 102 hospitalized and 26 outpatients with PCR-confirmed COVID-19 were analyzed. Primary outcome was in-hospital, COVID-19 related mortality, and secondary outcome was COVID-19 severity as assessed by the WHO ordinal scale. Complement activity of alternative and classical pathways, its factors, regulators, and activation products were measured by hemolytic titration, turbidimetry, or enzyme-immunoassays. Clinical covariates and markers of inflammation were extracted from hospital records. Results: Increased complement activation was characteristic for hospitalized COVID-19 patients. Complement activation was significantly associated with markers of inflammation, such as interleukin-6, C-reactive protein, and ferritin. Twenty-five patients died during hospital stay due to COVID-19 related illness. Patients with uncontrolled complement activation leading to consumption of C3 and decrease of complement activity were more likely to die, than those who had complement activation without consumption. Cox models identified anaphylatoxin C3a, and C3 overactivation and consumption (ratio of C3a/C3) as predictors of in-hospital mortality [HR of 3.63 (1.55-8.45, 95% CI) and 6.1 (2.1-17.8), respectively]. Conclusion: Increased complement activation is associated with advanced disease severity of COVID-19. Patients with SARS-CoV-2 infection are more likely to die when the disease is accompanied by overactivation and consumption of C3. These results may provide observational evidence and further support to studies on complement inhibitory drugs for the treatment of COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Activación de Complemento/inmunología , Complemento C3a/inmunología , Mortalidad Hospitalaria , SARS-CoV-2/inmunología , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA