Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38676070

RESUMEN

Unsupervised anomaly detection in multivariate time series sensor data is a complex task with diverse applications in different domains such as livestock farming and agriculture (LF&A), the Internet of Things (IoT), and human activity recognition (HAR). Advanced machine learning techniques are necessary to detect multi-sensor time series data anomalies. The primary focus of this research is to develop state-of-the-art machine learning methods for detecting anomalies in multi-sensor data. Time series sensors frequently produce multi-sensor data with anomalies, which makes it difficult to establish standard patterns that can capture spatial and temporal correlations. Our innovative approach enables the accurate identification of normal, abnormal, and noisy patterns, thus minimizing the risk of misinterpreting models when dealing with mixed noisy data during training. This can potentially result in the model deriving incorrect conclusions. To address these challenges, we propose a novel approach called "TimeTector-Twin-Branch Shared LSTM Autoencoder" which incorporates several Multi-Head Attention mechanisms. Additionally, our system now incorporates the Twin-Branch method which facilitates the simultaneous execution of multiple tasks, such as data reconstruction and prediction error, allowing for efficient multi-task learning. We also compare our proposed model to several benchmark anomaly detection models using our dataset, and the results show less error (MSE, MAE, and RMSE) in reconstruction and higher accuracy scores (precision, recall, and F1) against the baseline models, demonstrating that our approach outperforms these existing models.


Asunto(s)
Ganado , Animales , Algoritmos , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Agricultura/métodos
2.
Sensors (Basel) ; 23(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067875

RESUMEN

Pig husbandry constitutes a significant segment within the broader framework of livestock farming, with porcine well-being emerging as a paramount concern due to its direct implications on pig breeding and production. An easily observable proxy for assessing the health of pigs lies in their daily patterns of movement. The daily movement patterns of pigs can be used as an indicator of their health, in which more active pigs are usually healthier than those who are not active, providing farmers with knowledge of identifying pigs' health state before they become sick or their condition becomes life-threatening. However, the conventional means of estimating pig mobility largely rely on manual observations by farmers, which is impractical in the context of contemporary centralized and extensive pig farming operations. In response to these challenges, multi-object tracking and pig behavior methods are adopted to monitor pig health and welfare closely. Regrettably, these existing methods frequently fall short of providing precise and quantified measurements of movement distance, thereby yielding a rudimentary metric for assessing pig health. This paper proposes a novel approach that integrates optical flow and a multi-object tracking algorithm to more accurately gauge pig movement based on both qualitative and quantitative analyses of the shortcomings of solely relying on tracking algorithms. The optical flow records accurate movement between two consecutive frames and the multi-object tracking algorithm offers individual tracks for each pig. By combining optical flow and the tracking algorithm, our approach can accurately estimate each pig's movement. Moreover, the incorporation of optical flow affords the capacity to discern partial movements, such as instances where only the pig's head is in motion while the remainder of its body remains stationary. The experimental results show that the proposed method has superiority over the method of solely using tracking results, i.e., bounding boxes. The reason is that the movement calculated based on bounding boxes is easily affected by the size fluctuation while the optical flow data can avoid these drawbacks and even provide more fine-grained motion information. The virtues inherent in the proposed method culminate in the provision of more accurate and comprehensive information, thus enhancing the efficacy of decision-making and management processes within the realm of pig farming.


Asunto(s)
Flujo Optico , Porcinos , Animales , Movimiento/fisiología , Algoritmos , Movimiento (Física) , Granjas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA