Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 231(1): 32-39, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33728638

RESUMEN

With climate change, heat waves are becoming increasingly frequent, intense and broader in spatial extent. However, while the lethal effects of heat waves on humans are well documented, the impacts on flora are less well understood, perhaps except for crops. We summarize recent findings related to heat wave impacts including: sublethal and lethal effects at leaf and plant scales, secondary ecosystem effects, and more complex impacts such as increased heat wave frequency across all seasons, and interactions with other disturbances. We propose generalizable practical trials to quantify the critical bounding conditions of vulnerability to heat waves. Collectively, plant vulnerabilities to heat waves appear to be underappreciated and understudied, particularly with respect to understanding heat wave driven plant die-off and ecosystem tipping points.


Asunto(s)
Ecosistema , Calor , Cambio Climático , Plantas , Estaciones del Año
2.
J Environ Sci (China) ; 90: 262-274, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081322

RESUMEN

Increasing atmospheric CO2 is both leading to climate change and providing a potential fertilisation effect on plant growth. However, southern Australia has also experienced a significant decline in rainfall over the last 30 years, resulting in increased vegetative water stress. To better understand the dynamics and responses of Australian forest ecosystems to drought and elevated CO2, the magnitude and trend in water use efficiency (WUE) of forests, and their response to drought and elevated CO2 from 1982 to 2014 were analysed, using the best available model estimates constrained by observed fluxes from simulations with fixed and time-varying CO2. The ratio of gross primary productivity (GPP) to evapotranspiration (ET) (WUEe) was used to identify the ecosystem scale WUE, while the ratio of GPP to transpiration (Tr) (WUEc) was used as a measure of canopy scale WUE. WUE increased significantly in northern Australia (p < 0.001) for woody savannas (WSA), whereas there was a slight decline in the WUE of evergreen broadleaf forests (EBF) in the southeast and southwest of Australia. The lag of WUEc to drought was consistent and relatively short and stable between biomes (≤3 months), but notably varied for WUEe, with a long time-lag (mean of 10 months). The dissimilar responses of WUEe and WUEc to climate change for different geographical areas result from the different proportion of Tr in ET. CO2 fertilization and a wetter climate enhanced WUE in northern Australia, whereas drought offset the CO2 fertilization effect in southern Australia.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Sequías , Bosques , Australia , Ecosistema , Agua
3.
Sci Rep ; 8(1): 13094, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166559

RESUMEN

Heat waves have profoundly impacted biota globally over the past decade, especially where their ecological impacts are rapid, diverse, and broad-scale. Although usually considered in isolation for either terrestrial or marine ecosystems, heat waves can straddle ecosystems of both types at subcontinental scales, potentially impacting larger areas and taxonomic breadth than previously envisioned. Using climatic and multi-species demographic data collected in Western Australia, we show that a massive heat wave event straddling terrestrial and maritime ecosystems triggered abrupt, synchronous, and multi-trophic ecological disruptions, including mortality, demographic shifts and altered species distributions. Tree die-off and coral bleaching occurred concurrently in response to the heat wave, and were accompanied by terrestrial plant mortality, seagrass and kelp loss, population crash of an endangered terrestrial bird species, plummeting breeding success in marine penguins, and outbreaks of terrestrial wood-boring insects. These multiple taxa and trophic-level impacts spanned >300,000 km2-comparable to the size of California-encompassing one terrestrial Global Biodiversity Hotspot and two marine World Heritage Areas. The subcontinental multi-taxa context documented here reveals that terrestrial and marine biotic responses to heat waves do not occur in isolation, implying that the extent of ecological vulnerability to projected increases in heat waves is underestimated.


Asunto(s)
Organismos Acuáticos/fisiología , Calor , Filogenia , Cambio Climático
4.
Sci Rep ; 6: 23418, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26996244

RESUMEN

Stomatal conductance links plant water use and carbon uptake, and is a critical process for the land surface component of climate models. However, stomatal conductance schemes commonly assume that all vegetation with the same photosynthetic pathway use identical plant water use strategies whereas observations indicate otherwise. Here, we implement a new stomatal scheme derived from optimal stomatal theory and constrained by a recent global synthesis of stomatal conductance measurements from 314 species, across 56 field sites. Using this new stomatal scheme, within a global climate model, subtantially increases the intensity of future heatwaves across Northern Eurasia. This indicates that our climate model has previously been under-predicting heatwave intensity. Our results have widespread implications for other climate models, many of which do not account for differences in stomatal water-use across different plant functional types, and hence, are also likely under projecting heatwave intensity in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA