Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 185(10): 1709-1727.e18, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483374

RESUMEN

Bone marrow (BM)-mediated trained innate immunity (TII) is a state of heightened immune responsiveness of hematopoietic stem and progenitor cells (HSPC) and their myeloid progeny. We show here that maladaptive BM-mediated TII underlies inflammatory comorbidities, as exemplified by the periodontitis-arthritis axis. Experimental-periodontitis-related systemic inflammation in mice induced epigenetic rewiring of HSPC and led to sustained enhancement of production of myeloid cells with increased inflammatory preparedness. The periodontitis-induced trained phenotype was transmissible by BM transplantation to naive recipients, which exhibited increased inflammatory responsiveness and disease severity when subjected to inflammatory arthritis. IL-1 signaling in HSPC was essential for their maladaptive training by periodontitis. Therefore, maladaptive innate immune training of myelopoiesis underlies inflammatory comorbidities and may be pharmacologically targeted to treat them via a holistic approach.


Asunto(s)
Artritis , Periodontitis , Animales , Células Madre Hematopoyéticas , Inmunidad Innata , Ratones , Mielopoyesis
2.
Cell ; 183(3): 771-785.e12, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33125892

RESUMEN

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with ß-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of ß-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from ß-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of ß-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.


Asunto(s)
Granulocitos/inmunología , Inmunidad Innata , Neoplasias/inmunología , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Epigénesis Genética , Interferón Tipo I/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Neoplasias/patología , Neutrófilos/metabolismo , Fenotipo , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/metabolismo , Transcripción Genética , Transcriptoma/genética , beta-Glucanos/metabolismo
3.
Immunol Rev ; 314(1): 142-157, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190144

RESUMEN

The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis. Neutrophils are the first responders against infectious or inflammatory challenges and have versatile functions in immunity. Together with other innate immune cells, neutrophils are effectors of peripheral trained immunity. However, given the short lifetime of neutrophils, their ability to acquire immunological memory may lie in the central training of their BM progenitors resulting in generation of reprogrammed, that is, "trained", neutrophils. Although trained immunity may have beneficial effects in infection or cancer, it may also mediate detrimental outcomes in chronic inflammation. Here, we review the emerging research area of trained immunity with a particular emphasis on the role of neutrophils and granulopoiesis.


Asunto(s)
Inmunidad Innata , Neutrófilos , Humanos , Inmunidad Entrenada , Inflamación , Médula Ósea
4.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34663697

RESUMEN

Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2-6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular "labile" heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94-100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.


Asunto(s)
Epigénesis Genética , Hemo/fisiología , Inmunidad Innata , Mielopoyesis , Animales , Humanos , Ratones
5.
Toxicol Appl Pharmacol ; 346: 58-75, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29596925

RESUMEN

Human pesticide exposure can occur both occupationally and environmentally during manufacture and after the application of indoor and outdoor pesticides, as well as through consumption via residues in food and water. There is evidence from experimental studies that numerous pesticides, either in isolation or in combination, act as endocrine disruptors, neurodevelopmental toxicants, immunotoxicants, and carcinogens. We reviewed the international literature on this subject for the years between 1990 and 2017. The studies were considered in this review through MEDLINE and WHO resources. Out of the n = 1817 studies identified, n = 94 were reviewed because they fulfilled criteria of validity and addressed associations of interest. Epidemiological studies have provided limited evidence linking pre- and post-natal exposure to pesticides with cancers in childhood, neurological deficits, fetal death, intrauterine growth restriction, preterm birth, and congenital abnormalities (CAs). In this review, the potential association between pesticide exposure and the appearance of some human CAs (including among others musculoskeletal abnormalities; neural tube defects; urogenital and cardiovascular abnormalities) was investigated. A trend towards a positive association between environmental or occupational exposure to some pesticides and some CAs was detected, but this association remains to be substantiated. Main limitations of the review include inadequate exposure assessment and limited sample size. Adequately powered studies with precise exposure assessments such as biomonitoring, are warranted to clarify with certainty the potential association between pesticide exposure and human CAs.


Asunto(s)
Anomalías Inducidas por Medicamentos/etiología , Anomalías Congénitas/etiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición Profesional/efectos adversos , Plaguicidas/efectos adversos , Animales , Humanos
7.
Blood Adv ; 5(1): 129-142, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33570632

RESUMEN

CD4+ T cells orchestrate immune responses and are actively engaged in shaping tumor immunity. Signal transducer and activator of transcription (STAT) signaling controls the epigenetic tuning of CD4+ T-cell differentiation and polarization, and perturbed STAT signaling networks in CD4+ T cells subvert antitumor immunity in malignancies. Azacitidine (AZA), the mainstay therapy for high-risk myelodysplastic syndromes (HR-MDS), affects CD4+ T-cell polarization and function, but whether this contributes to AZA efficacy is currently unknown. By using functional proteomic, transcriptomic, and mutational analyses in 73 HR-MDS patients undergoing AZA therapy, we demonstrate that responding patients exhibited a coordinated CD4+ T-cell immune response and downregulated the inflammatory cytokine signaling pathways in CD4+ T cells after AZA, in contrast to nonresponders who upregulated the same pathways. We further observed an AZA-mediated downregulation of intereukin-6 (IL-6)-induced STAT3 phosphorylation in CD4+FOXP3- conventional T cells (Tcons) that correlated independently with better response and survival, whereas it was also not associated with the mutation number and profile of the patients. The AZA-induced downregulation of IL-6/STAT3 axis in Tcons restored the STAT signaling architecture in CD4+ T-cell subsets, whereas STAT signaling networks remained disorganized in patients who upregulated IL-6/STAT3 activity in Tcons. Given the pivotal role of CD4+ T cells in adaptive immunity, our findings suggest that the downregulation of the IL-6/STAT3 pathway in Tcons potentially constitutes a previously unrecognized immune-mediated mechanism of action of AZA and sets the scene for developing rational strategies of AZA combinations with IL-6/STAT3 axis inhibitors.


Asunto(s)
Azacitidina , Interleucina-6 , Azacitidina/farmacología , Linfocitos T CD4-Positivos , Factores de Transcripción Forkhead , Humanos , Interleucina-6/genética , Proteómica , Factor de Transcripción STAT3 , Transducción de Señal
8.
Front Immunol ; 11: 1540, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849521

RESUMEN

Hematopoietic stem cells (HSC) reside in the bone marrow (BM) within a specialized micro-environment, the HSC niche, which comprises several cellular constituents. These include cells of mesenchymal origin, endothelial cells and HSC progeny, such as megakaryocytes and macrophages. The BM niche and its cell populations ensure the functional preservation of HSCs. During infection or systemic inflammation, HSCs adapt to and respond directly to inflammatory stimuli, such as pathogen-derived signals and elicited cytokines, in a process termed emergency myelopoiesis, which includes HSC activation, expansion, and enhanced myeloid differentiation. The cell populations of the niche participate in the regulation of emergency myelopoiesis, in part through secretion of paracrine factors in response to pro-inflammatory stimuli, thereby indirectly affecting HSC function. Here, we review the crosstalk between HSCs and cell populations in the BM niche, specifically focusing on the adaptation of the HSC niche to inflammation and how this inflammatory adaptation may, in turn, regulate emergency myelopoiesis.


Asunto(s)
Células de la Médula Ósea/metabolismo , Médula Ósea/metabolismo , Microambiente Celular , Inflamación/metabolismo , Adaptación Biológica , Animales , Células de la Médula Ósea/citología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Susceptibilidad a Enfermedades , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inflamación/etiología , Inflamación/patología , Nicho de Células Madre
9.
Front Oncol ; 10: 581457, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363012

RESUMEN

Several lines of clinical and experimental evidence suggest that immune cell plasticity is a central player in tumorigenesis, tumor progression, and metastasis formation. Neutrophils are able to promote or inhibit tumor growth. Through their interaction with tumor cells or their crosstalk with other immune cell subsets in the tumor microenvironment, they modulate tumor cell survival. Here, we summarize current knowledge with regards to the mechanisms that underlie neutrophil-mediated effects on tumor establishment and metastasis development. We also discuss the tumor-mediated effects on granulopoiesis and neutrophil precursors in the bone marrow and the involvement of neutrophils in anti-tumor therapeutic modalities.

10.
Cell Metab ; 32(4): 591-604.e7, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32738205

RESUMEN

Regulatory T cells (Tregs) are vital for the maintenance of immune homeostasis, while their dysfunction constitutes a cardinal feature of autoimmunity. Under steady-state conditions, mitochondrial metabolism is critical for Treg function; however, the metabolic adaptations of Tregs during autoimmunity are ill-defined. Herein, we report that elevated mitochondrial oxidative stress and a robust DNA damage response (DDR) associated with cell death occur in Tregs in individuals with autoimmunity. In an experimental autoimmune encephalitis (EAE) mouse model of autoimmunity, we found a Treg dysfunction recapitulating the features of autoimmune Tregs with a prominent mtROS signature. Scavenging of mtROS in Tregs of EAE mice reversed the DDR and prevented Treg death, while attenuating the Th1 and Th17 autoimmune responses. These findings highlight an unrecognized role of mitochondrial oxidative stress in defining Treg fate during autoimmunity, which may facilitate the design of novel immunotherapies for diseases with disturbed immune tolerance.


Asunto(s)
Autoinmunidad/inmunología , Mitocondrias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción
11.
J Clin Invest ; 130(12): 6261-6277, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817592

RESUMEN

FOXP3+CD4+ regulatory T cells (Tregs) are critical for immune homeostasis and respond to local tissue cues, which control their stability and function. We explored here whether developmental endothelial locus-1 (DEL-1), which, like Tregs, increases during resolution of inflammation, promotes Treg responses. DEL-1 enhanced Treg numbers and function at barrier sites (oral and lung mucosa). The underlying mechanism was dissected using mice lacking DEL-1 or expressing a point mutant thereof, or mice with T cell-specific deletion of the transcription factor RUNX1, identified by RNA sequencing analysis of the DEL-1-induced Treg transcriptome. Specifically, through interaction with αvß3 integrin, DEL-1 promoted induction of RUNX1-dependent FOXP3 expression and conferred stability of FOXP3 expression upon Treg restimulation in the absence of exogenous TGF-ß1. Consistently, DEL-1 enhanced the demethylation of the Treg-specific demethylated region (TSDR) in the mouse Foxp3 gene and the suppressive function of sorted induced Tregs. Similarly, DEL-1 increased RUNX1 and FOXP3 expression in human conventional T cells, promoting their conversion into induced Tregs with increased TSDR demethylation, enhanced stability, and suppressive activity. We thus uncovered a DEL-1/αvß3/RUNX1 axis that promotes Treg responses at barrier sites and offers therapeutic options for modulating inflammatory/autoimmune disorders.


Asunto(s)
Proteínas de Unión al Calcio/inmunología , Moléculas de Adhesión Celular/inmunología , Integrina beta3/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/inmunología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Integrina beta3/genética , Ratones , Ratones Noqueados , Transducción de Señal/genética , Linfocitos T Reguladores/patología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/inmunología , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/inmunología
12.
Cell Rep ; 33(7): 108387, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207187

RESUMEN

The tuberculosis vaccine bacillus Calmette-Guérin (BCG) protects against some heterologous infections, probably via induction of non-specific innate immune memory in monocytes and natural killer (NK) cells, a process known as trained immunity. Recent studies have revealed that the induction of trained immunity is associated with a bias toward granulopoiesis in bone marrow hematopoietic progenitor cells, but it is unknown whether BCG vaccination also leads to functional reprogramming of mature neutrophils. Here, we show that BCG vaccination of healthy humans induces long-lasting changes in neutrophil phenotype, characterized by increased expression of activation markers and antimicrobial function. The enhanced function of human neutrophils persists for at least 3 months after vaccination and is associated with genome-wide epigenetic modifications in trimethylation at histone 3 lysine 4. Functional reprogramming of neutrophils by the induction of trained immunity might offer novel therapeutic strategies in clinical conditions that could benefit from modulation of neutrophil effector function.


Asunto(s)
Vacuna BCG/inmunología , Reprogramación Celular/inmunología , Neutrófilos/efectos de los fármacos , Inmunidad Adaptativa , Adulto , Anciano , Vacuna BCG/metabolismo , Femenino , Humanos , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Mycobacterium tuberculosis/inmunología , Neutrófilos/metabolismo , Tuberculosis/inmunología , Vacunación/métodos
14.
J Innate Immun ; 10(5-6): 365-372, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29874678

RESUMEN

An intact and fully functional innate immune system is critical in the defense against pathogens. Indeed, during systemic infection, the ability of the organism to cope with the increased demand for phagocytes depends heavily on sufficient replenishment of mature myeloid cells. This process, designated emergency or demand-adapted myelopoiesis, requires the activation of hematopoietic progenitors in the bone marrow (BM), resulting in their proliferation and differentiation toward the myeloid lineage. Failure of BM progenitors to adapt to the enhanced need for mature cells in the periphery can be life-threatening, as indicated by the detrimental effect of chemotherapy-induced myelosuppression on the outcome of systemic infection. Recent advances demonstrate an important role of not only committed myeloid progenitors but also of hematopoietic stem cells (HSCs) in emergency myelopoiesis. In this regard, pathogen-derived products (e.g., Toll-like receptor ligands) activate HSC differentiation towards the myeloid lineage, either directly or indirectly, by inducing the production of inflammatory mediators (e.g., cytokines and growth factors) by hematopoietic and nonhematopoietic cell populations. The inflammatory mediators driving demand-adapted myelopoiesis target not only HSCs but also HSC-supportive cell populations, collectively known as the HSC niche, the microenvironment where HSCs reside. In this review, we discuss recent findings that have further elucidated the mechanisms that drive emergency myelopoiesis, focusing on the interactions of HSCs with their BM microenvironment.


Asunto(s)
Células de la Médula Ósea/fisiología , Células Madre Hematopoyéticas/fisiología , Inmunidad Innata , Mielopoyesis , Animales , Diferenciación Celular , Humanos , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA